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Abstract

Using a unital associative x-algebra ?l over C and a certain class of Hermitian finite projective
modules together with a graded involutive differential algebra, both associated with 2[, we developa
procedure for constructing graded Lie algebras with derivation. Taking, in particular, the canonical
differential algebra of Connes’ theory, related to the simplest two-point K-cycle, we obtain a class
of graded Lie algebras with derivation, which as one special case contains the graded Lie algebra
used in the Mainz—Marseille approach to model building. Finally, we outline a new derivation of
the standard model.
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1. Introduction

During the last decade there has been an increasing interest in methods related to non-
commutative differential geometric structures. One of the main streams in this field was
initiated and mainly developed by Connes [5,6]. Starting from the observation that the
“classical” Dirac K-cycle of a Riemannian manifold X contains all information about this
manifold, he invented the abstract notion of a K-cycle over a—in general — non-commutative
algebra. This gives the possibility to discuss geometric structures, which — in general —
do not possess an underlying “classical” manifold. Connes realized that already slight
modifications of the “classical” K-cycle, namely such that the algebra remains commutative,
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give rise to interesting physical applications. The simplest relevant example of this type
[6] is the K-cycle over the algebra C*°(X) ® (C @ C) leading to a unification of gauge
and Higgs bosons. If one takes the tensor product of this algebra with the vector space
of fermions, one can derive a version of the classical Lagrangian of the Salam-Weinberg
model of electroweak interactions with the bosonic sector described in terms of a unified
non-commutative gauge field, see [5-7]. The above algebra is the simplest example of the
class of algebras C*°(X) ® (M C & M,C), which we call two-point algebras. For the
derivation of the full (classical) standard model, Connes and Lott [7] proposed to use a
K-cycle over the algebra CR°(X) ® (C @ H), where H denotes the field of quaternions
and C°(X) the algebra of real smooth functions on X. A detailed presentation of this
construction can be found in a series of papers by Kastler [17-20]. For an overview over
the mathematical background we refer to [26] and for a physicist’s review to [9].

There is another approach to model building, proposed by Coquereaux and Scheck and
further developed by their groups in Mainz and Marseille, see [8,10-13], which at first sight
seems to be completely different from that of Connes and Lott. These authors postulate
ad hoc a certain graded matrix Lie algebra and consider a generalized connection with
values in this algebra. The connection is built both from differential one forms and zero
forms, representing the classical gauge fields of the electroweak interaction and the scalar
Higgs fields, respectively. Adding by hand the gauge bosons of the strong interaction and
choosing appropriate fermionic representations, one can derive the classical Lagrangian of
the standard model in this way.

The fact that the bosonic sector in this type of models is unified, has non-trivial phe-
nomenological consequences. In particular, in most versions one obtains a prediction of the
Higgs mass at tree level. However, there are — from the phenomenological point of view —
certain subtle differences between the two above-mentioned approaches. This is mainly re-
lated to the fact that within the construction of Connes and Lott one gets additional relations
between boson and fermion masses. For a detailed discussion of this aspect we refer to [22].

In this paper we present a rigorous mathematical link between these two approaches.
Using results from our previous paper [21] we will prove that given the simplest two-point
K-cycle together with the differential algebra £27,, which is obtained from the universal
differential algebra (associated with the algebra of the K-cycle) by factorizing with respect
to a canonically given ideal, and taking a finite projective module over the algebra, we
are able to construct in a canonical way a graded Lie algebra. Since every finite projective
module carries a canonical connection, this graded Lie algebra is naturally endowed with
a derivation. If one chooses the module appropriately, then one arrives at the graded Lie
algebra used by the Mainz—-Marseille group for the derivation of the standard model. This
way all structures, ad hoc postulated within this approach, find their natural explanation
within the context of Connes’ theory.

As a matter of fact, the construction of graded Lie algebras with derivation proposed in
this paper is not limited to the case, when a K-cycle together with the canonically associated
differential algebra £2f} is given. All we need — in the most general context — is a unital
associative algebra 2 over C (fulfilling a certain technical condition) and a certain graded
differential algebra A , associated with % in a sense defined below. Then taking an arbitrary
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finite projective module over 9, we can construct a graded Lie algebra with derivation - a
fact, which at least from a purely mathematical point of view seems to be of some interest
in itself. For physical applications as discussed above one is rather interested in the case,
when ¥ and A}, are endowed additionally with an involution and the module carries a
Hermitian structure. It will be interesting to apply our general construction to situations more
complicated than that of the simplest two-point K-cycle. In particular, a similar analysis
for the N-point case would be interesting, because this case seems to be relevant for the
construction of grand unified theories, see [2-4].

The paper is organized as follows: In Section 2.1 we present the construction of graded
Lie algebras in the general context — as indicated above. In Section 2.2 we discuss the notion
of connections on finite projective modules and show how the canonical connection gives
rise to a graded derivation in the graded Lie algebra constructed before. Next, in Section 2.3
we give a matrix formulation of these structures. In Section 3.1 we review results [21] on
the differential algebra A% associated canonically with the simplest two-point K-cycle. In
Section 3.2 we consider the graded Lie algebra H for this case and distinguish a certain
graded Lie subalgebra Hg of H relevant for model building. In Section 3.3 we change the
standard matrix representation of the structures discussed before. In Section 4 we show that
the mathematical structures used in the Mainz—Marseille approach are naturally obtained
from the framework developed in this paper. More precisely, in Section 4.1 we derive
a slightly generalized version of the graded Lie algebra arising in the Mainz—Marseille
approach. In Section 4.2 we define a projection of the graded Lie algebra of Section 3.2 to
that of Section 4.1, and we discuss the structure of the projected geometrical objects. Then,
in Section 4.3, we specialize to the original Mainz—Marseille model as described in [11,12].
Finally, in Section 5 we outline how the standard model can be derived in our scheme.

2, The general scheme
2.1. Finite projective modules with Hermitian structure and graded Lie algebras

Let ¥ be a unital associative x-algebra over C, so that a*a = 0 iff a = 0. Moreover,
let (A}, o, *, d) be a graded involutive differential algebra associated with 2. That means
Ay = By Ak AY = 9. The dot e denotes the multiplication A% e A C A§[+I . d the

A
graded differential, d : Afjl —> A{ﬁl“ , and * is an involution compatible with 4,

d(x*) = (=D @n)*, re Al (1)

Since A = Agl , we have a natural 2-bimodule structure on Aj; . When multiplying elements
of ¥ with elements of A}, we omit the dot for simplicity.

We recall [26] that every finite projective right module £ over 2 has the structure £ =
eNP, where p is a natural number and e € Endy (U?) with e = e. Here AP is treated as
CP @ %. Elements ¢ € AP are of the form ¢ = Y, co ® aq , finite sum, where ¢, € C?
and a, € . We shall often write { = ¢ ® a with a linear extension to finite sums being
understood.



110 R. Matthes et al. / Journal of Geometry and Physics 20 (1996) 107-141

Definition 1. A Hermitian finite projective right %-module is a pair (£, (, )g), where
(, )e : £ x & —> Uis a sesquilinear, Hermitian, non-degenerate, positive map.

We define a Hermitian structure on 27 by
(c®a, c®a)wr :=(c,C)cr a*a, (2)

where (, )cr denotes a scalar product on C?. The involution of endomorphisms of A” is
defined by (x*¢, Oar = (£, xC)ur for x € Endy(UP) . We assume that e is an orthogonal
(Hermitian) projector, e = e*. Restricting the Hermitian structure given by (2) to £ = %? ,
we get a Hermitian structure on £.

Let us denote the tensor product of the right module £ with the bimodule Af)‘l over the
algebra % by £¥ = £ @y A%, €Y := £ and £* = Dreng E*. On £* we have the natural
structure of a right Aj-module inherited from the multiplication in Aj:

EEx Ay > E@ur, ) E®ur)ei :=£®y (rok)e £ 3)
for§ e £, A € A{ﬁl - Af)[ . We extend the Hermitian structure on £ to mappings
(e eF x el — Al by

E®ur, E@uNE =A% e (E,E)e oi @
Lemma 2. We have:

(i) €a,Ea)t =ar€, 5 aforec ek Ecel ajaen,
Q) (& 65 =E o) fors ek Eedl,
(i) (&, 6)5° =0 VE e £iffe =0, & € &F,
v) €.5HY =oveecifi=0Ece.
Let H* = Homy (€, EX) be the set of homomorphisms of the right %-module £ to the
right %-module £* and H := &, eNo HK. Using the right A} -module structure on £*, see

(3), we get a natural associative multiplication e on . We define o : H* x H/ — HF*!
by

(00 )(€) = (ide ®u #)0 (e B idyt ) 06(E) (5)

forp € H*, 6 € H, £ € £. The Hermitian mappings ( , )lg’o and (, )g‘k induce an
involution on H*;

€. 0" ENg* = (). O’ veEeE, oeH ©)
Due to Lemma 2, this involution is well-defined. Moreover, one can show that
(0e0)* =0"e0", o0,0€H. @)

Thus, H is an associative, N-graded, unital, involutive algebra over C.
We define

[0,0]g =005 —(—D"pep, oeH 5eH. (8)
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Lemma 3. With respect to the above bracket, H is a graded Lie algebra, i.e. we have for
0.0 eH. peH oeHandz, 7 € C:

i fo,8lg = —(—=D¥(3, 0lg»
()  [z0+70, 8]y =zlo, 0lg + [0, &lg. )
(i) (D[, 18, Blglg + (=13, (3. 0lglg + (=)™ 1[5, [0, dlglg = 0.

Finally, we endow £* naturally with the structure of a left graded H-module, putting
geé = (ide ®y o) 0 (0 ®u id 4 (&) (10)
forp € H* and £Ee &l By construction, we have

(0e0)eE=pe(pek), p0€cH, Ec& (1)

Thus, £* is a natural representation space of the graded Lie algebra H.
2.2. Connections and graded derivations

Now we recall the notion of a connection on £ associated with the differential calculus
(Ay, o %, d), see [7].

Definition 4. (i) A connection on & is given by a C-linear map V : £ — &! so that
V(a)=(Vé)a+ & RydaforE €&, aec .

(ii) A connection is compatible (with the Hermitian structure) iff (¢, VE)>! +(ve, )10 =
d(E, &) forg, Ec €.

Definition 5. (cf. [7]). The gauge group /() is the group of unitary automorphisms of £,
UE) := {u € Endy(E): uu™ = u*u = idg} and gauge transformations of the connection
V are given by uVu*.

We extend V uniquely to linear maps V : £" — £"*! by
VEQuA):=(VE)edA+EQudr, E£€&, Xe Ay, (12)

satisfying V(£ @ 1) = (VE) o A + (—1)"E o dA, £ € ", A € A} . The curvature of the
connection V,

6 := V2|, (13)
is an element of 2.
Lemma 6. There exists a canonical compatible connection Vy on £ given by

Vol ®a) == e(c ® 19) @u da (14)

withc @ a € £ C NP and 1y denoting the unit element of .
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Lemma 7. Any compatible connection V on £ has the form

V=VW+p Withp:—p*EH]. (15)

Proof. See [26]. 0O

The existence of the canonical connection V on £ ensures that we have a canonical
graded derivation D : HK — HFTL,

(Do)(€) := Vo(e(®)) — (-1)*a e (W §), (16)

where & € £, o € H*. One easily shows that

(Do)(Ea) = (Do) (§))a,
D(ged)=(Do)ed+ (—1)*geDg, a7
Dlo, 8y = [Do, 81g + (—1)*[0, D3],

(Do)* = (—D* D(g*)

for o € H*, & € H' and a € Y. Note, however, that D is — in general — not a differential
of H, because we get from (16)

DXog=6pep—peby, ocH, (18)
where 6y := Vg is the curvature of the canonical connection Vg . From (16) one also finds

6=60+Dp+pep (19)
and Definition 5 gives the following formulae for gauge transformations:

uvu* = Vo +uDu* +upu®,  yvu(p) = uDu* +upu*®, y,0)=ubu*. (20)
2.3. Matrix representation

Now we choose the canonical basis {¢;};=1,... , in C” together with the canonical scalar
product. This enables us to embed all structures discussed in Sections 2.1 and 2.2 into the
tensor product Ay ® M, C . Observe that {&; ® 1y };=1,..., is the canonical basis of the free
right %-module AP = CP @ U and

.....

P
e(e; ® 1) =) & @eji. @
j=1
Thus, the projector e is represented by the Hermitian p x p-matrix (ej;), ej; € ¥. Therefore,
elements

p P
Sze§=c®a=28i®0iaef, c=Zs,~c,-€Cp, (22)
i=1

i=]
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are naturally identified with columns
aj
E= ). ai=cael 23)

ap

Observe that e£ = £ means Zf:l eija; = a;. The Hermitian structure on & takes the form
_ i

& 8Oe=) a'a, &Eek (24)
i=1

Fort =£@u ki e&f withE =37 ¢ ®a; € £and h € A%, we get

p
E=EQuAr= Z(&‘i ® 19) Qu air. (25)

i=1
Therefore, elements £ € £X are naturally identified with columns
£1
=) | &=areay (26)
&
Again, e£ = £ means Z}’;l eij&j = & . The right A}-module structure of £* is given by
Eled
Ex Ay sEn—ser=| 1 |ee 27
EpeA

The canonical compatible connection Vp on £*, see (14) and (12), takes the form

P
Vot = (VpE) @ A + & ®u di = Z (6; ® 1y) ®u €jid(air)
i,j=1
p
=) (5 ®10) ®ueid (&) . (28)

i,j=1
Thus, V& € £KF1 can be represented by

d§)
we=e|l @ |. (29)
dé&,

Due to (23) and (26), ¢ € H¥ can be represented by a matrix
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e ... Q1 ... Qlp
e=1|e@1 ... ©j ... Qp | 0ij€ A{i- (30)
pl ... Opj --- Cpp

We have ege = g or, in matrix representation, le jmn=1€im@mneénj = Qij. Moreover,
the action of o on & € &' and the product e in the algebra H are represented by matrix
multiplication;

r

o&)i=) aijek, (31)
j=1
p

(©®8)ij =) 0in ®nj. (32)
n=1

and the involution (6) is given by
(©")ij = (@ji)*. (33)
We observe that H can be treated as an involutive subalgebra of A5 ® M,,C.
Using (28) and the above calculus one gets the curvature

p
B0)ij = Y ed(ew) o d(em)em, (34)
klm=1

where, in particular, one has to use Zf:mml eimd(emn)en; = 0. Using (16), (28) and (31)
one calculates

P
(D)E)= Y _ (¢ ® 1) ®u eijd(Qjnan)

ijin=1

P
- (=Dt Z (&; ® 1o) ®u 0ijejnd(ay)

i,jon=1
P
= Z (ei ® 1) Qu {eijd(Qjn)enmam}.
i,j,n,m=1

Thus, Dg can be represented by the following matrix:

d(en1) ... d(oip)
Do=ed()e=e : . e. 35)

d(Qp]) ... d(opp)

For later purposes it is convenient to represent also £* and Ay, as subspaces of A5 @M,C.
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This goes as follows: First, £* is embedded as a vector subspace, putting

ie§) = (&|g]... &), (36)
R
p

which means building the p x p-block matrix j¢(&) from the p x 1-column § € £*. To
preserve the right Aj-module structure of £*, we embed AJ as a subalgebra, putting

A O
iA(h) = . . ae Al (37)
O A

Under this embedding the right module structure and the left action of H on £* are trans-
ported as follows:

je(Eol)=ig)eja(k), E€&*, Ae A}, (38)
je(ceE)=0pejc(£), E€&* peH. (39

3. Application to the simplest two-point K-cycle and its associated differential
algebra A%

3.1. The differential algebra A%

The construction presented above can be, in particular, applied to the special case of a
K-cycle and its canonically associated differential algebra £24, , see [6,7]. For the rest of the
paper we restrict ourselves to this situation. We consider the simplest two-point K-cycle,
whose differential algebra £27y was analysed in [21]. To keep this paper self-contained, we
review some results obtained there.

Let X be a compact even-dimensional Riemannian spin manifold, dim(X) =: N. We
denote by L*(X, S) the Hilbert space of square integrable sections of the spinor bundle over
X, by C the Clifford bundle over X, and by C k the set of those sections of C, whose values
at each point x € X belong to the subspace spanned by products of less than or equal &
elements of 7. X of the same parity. We consider the even K-cycle (A, h, D, I'), see [5-7].
The Hilbert space 4 is

h:=L*X,S)QF, (40)

where F is a finite-dimensional Hilbert space, which in physical applications carries ferm-
ionic degrees of freedom. We assume that there exists a self-adjoint grading operator I
acting on h, I'* = id,

r=y"'®r, I eEnd(F), (41)

with y ¥+ = iN/291,2... ) N=1,N and I denoting the grading operators on L2(X, )
and F, respectively. The {y#},=1.....n are chosen as local orthonormal self-adjoint sections

.....
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of C!. We have the decomposition
F=3idg+MNF@id; —MNF=F,®F_. (42)
This gives the decomposition h = hy @ h_ with hy = L*(X, S) ® Fx . Thus, elements

Y € h naturally decompose as { = (gf) where ¥, € hy and ¥_ € h_ . Then I can be
represented by

e yN-‘r-l ®idF+ 0 .
0 _yN+l ®idg.

The algebra A4 of the K-cycle is
A=C¥X)R(ChC)=CPX) b CX). (43)
We consider the following involutive representation 7 of .4 on A:
7((f, W, ¥) = (f ®idr)W), (f ®idr_)(§)) @4)
for f, f € C®°(X)and ¥ € hy, ¥ € h_. This implies that I" commutes with 7 (A4) . In

the above representation we get

_ _ f®idr, 0 s 0 ~ 00
n(A)—{a—( 0 f®idpv>,f,feC =C (X)}. (45)

The self-adjoint generalized Dirac operator D of the K-cycle is
D:=D"®id; +y "' @ M, (46)

where D is the classical Dirac operator on L2(X, §) and M is an endomorphism of F.
One demands DI" + I'D = 0, which implies "M = —MT". The self-adjointness of D
implies M = M* . Thus, we have a natural decomposition M = M & M_,

M* 0 0 0
(47)

M+:=M%(idf+f)=(0 O), A/L::M%(id,;—f):(o M),

where M € Hom(F_, F). We define

o (idg, 0 o {0 0
M+‘(o o)’ M—_(o idr_ /)

M 0

MY =(M_M,) = ( ) o

2t r 0 0
), M_—(M+M_)_(O M‘,‘), (48)
0 0
Mi’“=M+(M_M+)'=(Mé o)

t
M2 = MMM = (g %2),
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where

M= (MM*Y', M5 :=MM*M),
M5 = M*(MM*) | M} := (M*M)".

There exists an involutive representation 7 of the universal differential algebra 2* over
Aon h, giving the algebra [7]

(@) =PrhH, 1@ =n,
4= (49)

(2 =1 )Y n@)ID. @] (D @) abe Ay, k=1

We restrict ourselves to the case F. = F_ = F and demand additionally M? ¢ Cidpgr.
In this case one can show, see [21], that

m m

@Ck—m@CM;‘ @Ck’2,71VN+1®CM£

rfy=| =" =0 . (50)

m m
@Ck—Zt—lyNH ®CM§; @Ck(h@CMi
t=0 =0

where m + | is the number of linearly independent elements Mi’ We denote L" =
C"/C" 2, forn > 2, andput L® = €% L' = C'and L" = [0} forn < 0. We have
L" = {0} forn > N. There is a graded algebra A% associated with 7(£2™) defined as
follows:

o0
A% =P a4

k=0
225 /7% for k > 2, 5h
A =opom(2h) =
m($2%) for k =0, 1
with multiplication
AR Al s LR — A ek = g (nE) € AN, (52)

where T € 7(2%), 7 € m(2'), so that ok (1) = A, 0;(F) = X. One can show [21] that

m m
@Lk_2’®CM’; @Lk—zf—lyN+l®CM£
Ak o~ t=0 t=0 (53)
A = m m
@Lk—zl—lyN+1 ®CM§, @Lk—zl ®CM}1
t=0 =0

Elements A € A’f4 are of the form
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m
Zak 2t ®M'; Z 2tﬁlyN+l ®M£

A= =0 . oabel”. (54

m
Z k—2t—1 N+1®M3, Zak 21®Mi

Thus, we see that A is completely characterized by the sequence of elements ak —a 0/2‘ -1
k=271 k=2 ‘wheretr =0, ..., m.Denoting by ¢ the classical vector spacelsomorphism

Lk = C"/C" -2 A"(X) where AX(X) is the set of complex-valued k-forms on
X, and denoting the transport by the isomorphism ¢ of the exterior product A in A*(X) =
@ﬁzo A¥(X) by the same symbol, we get: If ay , &y € L" are the characterizing elements

of » € AX R xe Al , then the characterizing elements ﬂg of Aehc A}jl are:

k+l 2t Z(ak r A ~l 20— r)+( )l—la12<~2r~1/\&é—z(t—r)-i-l)’

k+l 2r—1 Z(ak 2r ~é—2(t—r) l+( 1)1 k=2(t—r)—1 ~‘1‘ 2r),
~1 2 -1 k 2 —1 Joy

r=0
t

k+1-2 k-2 ~—2(r— -1 _k—2r—1 ~1=2(t—r)+1

BT =Y (@ AE T 4 () T Ay 0,

r=0
wheret =0,...,m.

We have an involution on A% given by A* := oy (t*) with ox(t) = A. Explicitly, for
elements A € A’;‘ represented as in (54) we find

m
Z(ak 2!) ®M’, Z(_l)k—l(a§—21~])*yN+l ®M£
}\* — t=0
m
=0 1=0
(56)
We define:
fo=—iy"eMe al, [, Alg := ek — (D1 e g,
de == " 'odo(a), a* = yNtlay N+, (57)

DA = pritio((d—d*) ®@idg)(R)

fora € L*, A € A%, where d is the exterior differential on A*(X) and pry, denotes the
projection from A% @ AX" onto A%F! . One easily proves that D is a graded differential
on A% . Moreover, one shows that

d:=D+[a, ] (58)
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is a graded differential on A* , too, which can be characterized as follows: If ag are the
characterizing elements of A € AK , then the characterizing elements ,8" of di € Ak“ are:

ﬂk 2r+1 dall(—Zt 4 (_l)k i(ak~2z+1 +a/3<—2r+1 ).
ﬂk =2t d k—2[-—1 _I_(_l)k](a]]( -2t afi 2t )'
k 2t da’; 2r— 1+( 1) i(a k 2t all( 7r)‘ (59)
ﬁk 2r+1 — do k 24— l)Al(ak 2r+1+ k=241
where t =0, ..., m. Relation (1) is fulfilled for the differential algebra (A%, e, *, a7) .
In [21] we have shown that A% coincides with the differential algebra 27 of Connes

and Lott associated with the even K-cycle (A, h, D, I') . The result (53) for .QB can also
be obtained from a different procedure presented in [16].

3.2. A certain Lie subalgebra of H

For the case under consideration, the graded Lie algebra H can be treated as a subalgebra
of A% ® M,,C. Thus, it should be possible to define a generalized trace on H provided that
we have a trace on A%, . This is the case, indeed.

Proposition 8. Any linear mapping T : A% —> L*, which vanishes on graded commu-
tators and which intertwines the differentials, i.e.
Theh—(—D¥ier) =0, 1 AX, ke Ay, (60)
Tod=doT, (61)

has in the representation (54) the form

m
Zak =2t ®M’ : Zaé—ZI—lyNH ®M§
t=0
T m m
Z N+]®M3,de2,®Mi
=0 t=0
= L))+ Zﬁ,(ak ¥ -y, (62)
=0
where L, : L* — L*, t = —1,0,...,m, are elements of End¢c(L*) commuting with
the exterior differential,
dol:[zl:fod, t=—1,0,...,m. (63)
Proof. See Appendix A. a

Due 1o (60) we can regard the mapping T as a generalized trace. We restrict ourselves to
the simplest case

L1 =0, L;=idg« for t=0,...,m,
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and denote this special trace by T4:

m m
Zk21®Mt; Z N+1®Mt
:0 1=
TA m m
Z k—2r—1 N+l ® M3 : Z
=0 t=0
= (all( 2r a§_2’). (64)

t=0

Now we extend the generalized trace T4 to the graded Lie algebra H. Since H C A% ®
M, C, we get a generalized trace T3, on H as the tensor product of the generalized trace T,
on A% and the usual trace on M,C. For ¢ € 'H represented by the matrix (30) we define
this linear map T : H —> L* as

p
Tr(@) = Y _ Taloi). (65)
i=1

Lemma 9. Forall g € H* and € H' we have Ty ([0.8];) = 0.

Proof. Using formulae (32), (8), (65) and (60) we obtain
D
Tr (0. 81g) = Y Ta(oij ®8ji — (—D"gji e 0ij) = 0. O
i,j=1
Putting/ = 0, o — up, 0 = u* foru € YU(E), in Lemma 9, we get
Ty (uou™) = Ty (0)- (66)

Thus, T3 ( - ) is invariant under unitary automorphisms of the module. We define
o0
Ho:=EPHy, HE:=1{oeH T =0} (67)

Due to Lemma 9, Hy is a graded Lie subalgebra of H.
We denote by Vp and Vy the canonical compatible connections on £, which are defined
according to (14) using the differential d, respectively, D on A%:

Vo(c®a):=e(c®@14) @a da, (68)
Volc®a):=e(c @ 14) ®4Da,

where ¢ € C? anda € A . Moreover, we denote by D and D the derivations on M associated
to Vp and Vp, tespectively, see (16):

(Do) (&) = Vo(08) — (=1)ko & (W &),

- M - 6
(Do)(E) = Vo(o€) — (¥ » (Vo) ©9)
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for o € H*. We introduce a special element ;. € H' by
(e ®a) =e(c®1,4) @4 fia, (70
where {1 was defined in (57). This gives the following matrix form:
P
u=e(l,p,®f)e or uj= Z eikduifLey;. (71)
k=1

Lemma 10. For the graded Lie algebra 'H associated to the differential algebra A% we
have

Do = Do + (1. 0l 0 € H. (72)

Proof. Let Z{;l £ ®a; € £ witha; = Zj’.’:l ejjaj € A andp € H* defined by
P I
0 Zsi ®ai | = Z (&j ®ejn) ®a Onidi,
i=1 ijon=l
where g,; = Zﬁmzl €njOjmemi € A’;‘. Using (16), (12), (14), (58) and (70) we find

p
(Do) (Z £ ® a,->

i=]

o (o(Gen)) e (5 (o))

p
> [Vt @ ) 0 0w + (5 @ €j) @ dConia)

ijon=1

—(_l)k(gj ® ejn) ® .4 Oni .dA(ai)]
p -~
Y (& ®ejn) ®ad(oniai

ijon=1

P P
= (Do) (Z &j ®ai> + Z (6j ® €jn) @4 (L ® 0ni — (=D oni @ Da;

i=1 i,jn=1
5 r r
= (Do) (Z &i ®ai) + ([, olg) (Z & ®ai> : .
i=1 i=1

Lemma 11. D is a graded derivation of Hy.

Proof. Forany g € H(’; we have with (72), Lemma 9, (65) and (35)

14
Ty (Do) = Tr (Do + (1. 0lg) = T (Do) = Y, Ta (€ijD(@jn)eni)-

ijn=1
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We compute the last term using the Leibniz rule for D, the property that e is a projector
and, finally, Eq. (60):

p p p

Y TateijD@jn)eni) =Y Ta (D(@in)eni) — I T (Dleij)oji)
i,jn=1 in=1 i,j=1
4 4
= Y Ta(D(in)enjeji) — Y Ta (Dleij)oji)
i,jn=1 i,j=1
14 p
= Y Ta(ejiD(in)enj) — Y Ta (Dleij)oji)-
i,j.n=1 ij=1
This implies 37 ;_; Ta (D(eij)@;i) = 0 and T (Do) = 3_7_, Ta (D(i;)). Finally, for-
mula (61) gives Ty (Do) = d{>"/_, T4 (0ii)} = 0. m)

3.3. Changing the standard matrix representation

In this section we analyse the matrix structures discussed in Section 2.3 for the case of
the differential algebra presented in Sections 3.1 and 3.2. For this purpose we use the fact
that A% can be treated as a subspace of L* ® End(F) ® M;C. Of course, elements of
the tensor product A* ® M,C, which in Section 3.2 were treated as p x p-matrices with
L* ® End(F) ® M;C-valued entries, can be treated as 2 x 2-matrices with L* @ End(F) ®
M, C-valued entries. This natural mapping can be realized as an inner automorphism of
L* ® End(F) ® M, C. It turns out that after applying this automorphism combined with
another natural mapping, see Section 4.2, we find that the image of Hy coincides with a
graded Lie subalgebra of the special graded linear Lie algebra A*(X) ® spl(p, p). This is
the appropriate formulation for deriving the mathematical structure of the Mainz-Marseille
approach, as will be shown in Section 4.3.

Let W = (Wi;)i j=1....p € MpCand w = (waB)a, B=1.2 € M2C. We denote

wWi wWi ... wWy,
wW wWzn ... wWy,

w@® W= . . . . (73)
wWpr wWp ... wWy,

and define

. Wwi, lez)

Hhw® W) = ( . 74

! Wwy Wuwpp 74)

We extend this mapping naturally to the algebra L* ® End(F) ® M>C ® M,C and denote
it by the same letter, the restriction to the subspace A* ® M,C will also be denoted by
i; . It is easy to convince oneself that the mapping (74) can be also realized as an inner
automorphism of the algebra M3, C . This goes as follows:

W) :=JWI™L, W, JeM;,C, Jij =8 2i-1 +8j12p.2i (75)
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fori, j = 1,...,2p. Moreover, it is easy to show that this operation consists in applying
the permutation (1,2,3,4,...,2p — 1,.2p) —> (1,3,....2p—1,2,4,...,2p) to both
rows and columns.

Note that due to (54) after applying the operation (75) to elements of Ajl ® M,,C the
grading operator y V! occurs exactly in every component of the two off-diagonal blocks.
The next step consists in removing V! from these blocks and applying the classical
isomorphism ¢ : L¥ — AX(X). For this purpose we define the following vector space
isomorphism i> from i; (A% ® M,,C) onto its image:

Zak 7’®Mt; Zak —2t—1 N+]®Mé

=0 t=0
2 m m

Zak 2t—1 N+1®Mr Zak 2[®M£
=0 =0

m
Zal]c—Zz ® MI; Zak 2r—1 ® Mé

=0
m
—2t—1 -
(S Sarem
=0

where az € L" ®M,,C and aZ = L(a:;) € A"(X)® M,C. The composition of these two
mappings gives the embedding i : A% ® M,C — A*(X) ® End(F) ® M;,,C.

(76)

i=10i), (77

often we will treat i as an isomorphism onto its image.
Now it is easy to characterize elements

ikm@Mr Zak”tl®M£
=0 :

Z ® M5 Za" “ @ M|

=0

of H. £ and A% | see (30), (36) and (37), transported by i. First, observe that ¢ € HO
and, therefore, we have

e — (e; ®id g 0 )
0 e Qidp )’ (79)

e, =€, =¢ € A°%X)OM,C, q=1.4

al € A"(X) ® M,C, (78)

if

i(e)

Since for elements o € H we have ege = g, we get for elements i(g) € i(H), given in the
representation (78),

aj = ejaje, a) = ejajey, aj = ejaze, aj = ejajey. (80)
Defining ie : £5 — 1(A% @ M,C) and i4 : A — (A% @ M,C) by putting

ig:=ioig, ia=1o074, (81)
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we can represent elements of £* and AY as elements of A*(X) ® End(F) ® M3,,C. For
elements of iz () we get from the representation (78):

aZ EA"(X)@E(,'), @)=1forg=1,2, (i)y=2forqg =3,4, (82)
where
1 1 ... 1 0 0 ...0 0 0 ...0
o 0 ... 0 1 1 ...1 0 0 ...0
Ep=ep|Cl. . . . [®CL. . & --0C[.
0o 0 ... 0 0 0 ...0 I 1 1

Analogously, for elements of i 4 (Af4) we have
4, e A"X)®1pxp, g=1,....4. (83)
Let us denote the spaces transported via i by bold symbols:
H=i(H), H:=iH"), Ho:=iHo), HE:=iHE), UE) =iUE)),
E:=ig(£), & :=ig(€h), A4 :=ia(4Y), A:=is(A). (84)

We define the multiplication in i(A* ® M,C) as the transport of the multiplication e in
A* ® M,C and denote it by the same symbol e:

i(x) e i(x) :=1(x ® x) (85)

for y € A’; ®M,C, x € AIA ® M,C. Denoting i(x) = x and i(x) = X, which we
represent as in (78), and using (55) we get:

m 1] m t
33 @t a2, SO @t a2ty
=0 s=0 =0 5=0
o i _ (_l)l—]as—lt—l A ég—Z(I—s)«H) ® Mi (_l)la;—-Z(l—s)Al A éé—lt) ® M",J_
m t m !
Z Z(ai—l\- A 513—2(1~s)—l+ Z Z(a‘l;—l\- A ﬁi~2(f—ﬂ+
t=0 s=0 1=0 s=0
(*1)1 a;—zu—s)—l Aétlfzx) ®M§ (__l)l—lal:;AZx—l Aélz—Z(zﬁsHl) ®M‘x‘
(86)
In particular, we have
ic(oet)=1(Q)eig(§), o0ecH, Ec&. (87)
Next we transport the remaining structures via i:
[i(0), i(@)]g :=i([o, 0]g). (88)
(i)™ :=1(e"), (89)
V(ig(€)) :=1g(VE), (90)
Di(o) :=i(Do), 91)

where 0, 0 € H and § € £*. Using (72) we find for Do, p € 'H,
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Do =ed(g)e + [p, 0lg, p:=1(u) =eme, (92)

. R 0 —i1,, ® MY
m:=1(1pxp®l/~) = <_i1p><p®M:9 px(])} 2 ) )

where d is the classical exterior differential acting componentwise on g . For the involution
(89) we get in the representation (78)

Zak 2'®M’; Zak —2f— l

Zak 21— 1®M3, Zak 2r®M£

*

Z(a" )@ Mj; ij(—l)"”(aé‘z"‘)* ® M}
=0 (93)
Z( D@y @ My; }:(ak 2y @ M}
Next, we observe that we can also transport the generalized trace defined in (65):
T3 (@) =T (@), e €H. (94)
For elements p € H- represented as in (78) we get
Ty (@) = Z(tr(a“ ) — @ ™). (95)
Thus, elements g € H are characterized by
tr(a}) = tr(ay) foralln. (96)
With the general form V = Vj + p of a connection on £ one finds
V=Vo+p, p:=ilp), (97)
where
Vo€ =igoVgoiz'(§) =e@d¢+[m, £ly), &
Next, using (34), one easily calculates
0o := i(6p) = e(d(e) + [m, e])(d(e) + [m, e))e. (98)
Finally, we study the influence of unitary transformations of the module
Es¢6— ¢ :=vE, Hapor— @ :=vov*, AL 22— XN =),
v € U(AP) := {V € End 4 (AP), V'V = ¥¥" = id 4¢}. (99)

It is easy to show that all formulae in this section remain form invariant if we put

’

¢ :=vev, d :=d, m :=vmv*+vd(v"), p = vuv' +evd(v')e' (100)
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Observe that after such a unitary module transformation the matrices p and m gain — in
general — entries in the two diagonal blocks, and the two off-diagonal blocks have no longer
the simple form (92).

4. Derivation of the mathematical structures used in the Mainz-Marseille approach
4.1. The graded Lie algebra used in the Mainz—Marseille approach

The basic concept used in the Mainz—Marseille approach is that of a graded Lie matrix
algebra with values in differential forms. For the sake of completeness, we briefly recall the
most important notions in a slightly generalized form.

Defining the grading operator

[ Voxp 0

we introduce a Z»-grading structure in M>,C and denote for M € M;,C
My = 1 (M + M), M, = (M — [LMTp). (101)

We denote the degree of a matrix M by dM and define 8My = 0 and 3M; = 1 . Defining
the graded commutator

1
[M,Nlg := > (M;N; — (=)™ N; M;),  M.Ne M,C, (102)
i,j=0

we get the structure of a graded Lie algebra on M5, C, called pl(p, p). There is a non-
simple graded Lie subalgebra spl(p, p) C My, C of graded-tracefree matrices [24] defined
by

spl(p, p) .= (M e M,C: u(/pM) = 0}. (103)
In spl(p, p) there exists a differential dps given by

u

0
dyM :=[m M];,, m=z (u* 0

) € spl(p, p), (104)
where u is an arbitrary element of U(p) and z € C. We choose, however, from the very
beginning 4 = 1,4, and z = —i. The reason for this choice will become clear below.

Now one defines the Z;-graded algebra A*(X) ® M, pC as the Z,-graded tensor product
of the Z»-graded algebras A*(X) and M;,C . This means: the total degree of b = S®M €
A*XY® M;,C is ab = (38 + dM) (mod 2), where 38 is the ordinary differential form
degree modulo 2 . Defining the product ©® in A*(X) ® M,,C by

BIMOCEWAN) = (=DM B AV)R (MN), (105)
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we get the natural graded Lie algebra structure on A*(X) @ M, C:
[b1, b2lg == b1 © b2 — (=D**1 2 b © by. (106)

Moreover, A*(X) ® M»,C is a graded involutive differential algebra with differential and
involution given by

(B ®M) :=(df) ®M + (=¥ B ® (dyM). (107)
BOM)*:=(-D¥™Mpg* oM, (108)
where d is the exterior differential on A*(X) and (B8 A v)* = v* A 8*. One easily calculates
bb = db + [m, b]g, (109)

where we identified 1 ® m = m. One finds ([b;. ba]g)* = —(—1)?"12%2 b} b}], and
(db)Y* = (=1)?°pb* for m = —m*. In terms of 2 x 2-block matrices one has

' arY (@) nhaE) (110)
ay &) \DRap) @)y )

where ag € A"(X) ® M,C. One easily shows that A*(X) ® spl(p, p) is a graded Lie

subalgebra of A*(X)®M;,C . Moreover, the graded differential b defined in (107) respects
the Lie subalgebra A*(X) ® spl(p, p).
Using the projection operator

L €] 0
L—(O 64) (i

with e and ey fulfilling (79), we define a graded Lie subalgebra of A*(X) ® spl(p. p):
9 1= {b € A¥(X) ®@spl(p, p): b = ebe}. (112)

We stress that we do not demand that e; and e4 are globally diagonalizable on X . This means
that the defining equation b = ebe cannot be globally solved on X. We also underline that -
in general — we do not have a differential on §, . What remains is a derivation © = ed( - )¢
on 9, . Explicitly, one has

Db = ed(b)e + [eme, blg, b € .. (113)
4.2. A projection

Now, recalling the representation (78) for i(A* ® M,C), we can define a surjective
mapping

p:i(A% ® MpC) — A™(X) @ M2,C, (114)
m m m m
Zallc—m ® M; Zalzc—Zt—l ® Mé Zallc—Zt a§_2t_l
=0 =0 =0 t=0

p —

m m m m

k—2t—1 t k—2t t k—2t—1 k—2t
E a, R M, E a; "M, E a, E a,
=0 =0

=0 t=
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Observe that ¢ = p(e) = diag(e| , e4), see (79) and (111).

Proposition 12.
(i) p(MHo) = 9.
(i) (w(@)* =v(e"). o< Hp.
(iii) Fork 41 < 2m + 1 we have ([0, 2lg) = [v(0), P(@)]g, 0 € M}, &€ H).
(iv) Fork < 2m we have p(Dg) = D(p(0)), o € H{.

Proof.
(i) From the property (96) of elements of My we obtain immediately

tr(lpop(@) =0, oeHp. (115)

This together with ere = r for any r = p(g) € p(Hp), see (80), means p(Hp) = 9. .
(ii) Fovllows immediately from (110) and (93).
(iii) Using (105) and (86) one can show fork + 1/ <2m + 1

p(x e %) =p(X) Op(X), x € (A4 ®M,0), x €i(Ay ®M,C). (116)

Fork+! > 2m+ 1 certain terms in ) e x disappear, because the summation in (86) only
runs from ¢ = 0 to r = m . These terms will in general not vanish in the product © of
the projected terms. Then, since for g € ’HS the total degree of p(g) € A*(X)®M;,C
equals &, we find with (8), (106), (85) and (88)

p(le, 8lg) = [0(0), ¥(@)]g, ecMh BeH) k+l1<2m+1. (117)

Here, on the Lh.s., [, ]g is the graded commutator in Ho, while on the rhis., [, g is
the graded commutator in §, .

(iv) Since p(u) = eme, see (104) and (92), for the choice made for u and z, we obtain (iv)
for k < 2m from (91), (92) and (113). The restriction to k < 2m is due to the same
reasons as in (iii), because in D there appears a graded commutator. a

The mapping p is not injective, because we have p o i(A’f4 ®M,C) C po i(A'f4+2 ®M,C)
for k < 2m — 1. However, we observe that Dl,-( A4, 8M, ) is injective for each fixed k and
that p restricted to H° is an isomorphism of algebras. Since MM* ¢ Cidp, we have
m > 1. Thus, the product of elements of ' by elements of H? or H' is transported via
p isomorphically. The same is true for the transport of the derivation (113) of elements of
H® and H' . We stress that applying p , one loses ! the N-grading structure of 7 . This is
inevitable, because on 9, there is only a Z>-grading structure.

Next, we discuss the transport of the gauge group of the module £, see Definition 5, and
the structure of the transported connection form. We have End(£) = HO and, therefore,
from (78), (80), (93) and Definition 5 we find

' In some physical models, see Section 5, the matrix M contains fermionic mass parameters, which are
removed by applying p.
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U= pUE)) = {u - (“‘ 0
0 uy

) , U = ejuj€), Uy = eqtqey,
uu] = ufu; = e, Wyu; = WUy = €4 . (118)

whereu;, ug € A%(X) ® M,C.
The transported connection form is a skew-adjoint element of D(Hl) and has according
to Lemma 7, (78), (80), (93) and (114) the structure

i (N mn o ot ¥
w = p(o) (r3 r4), r=-rj. n r3. Iy = —Ty,
ry = ejrie; € AI(X) @M,C, rm=eme € A%(x) ®M,C, (119)
I3 = e4rie| € AO(X) @M,C, ry=e4r4eq€ Al ® M, C.

For physical reasons, see Section 5, it is interesting to restrict the connection form w to
D(’H(l)) . This means, see (96),

tr(ry) = tr(ry). (120)

Thus, w is a skew-adjoint element of $,. . Using (19), (98), and (iv) of Proposition 12 one
gets for the transported curvature

fi=poi(@) = e(de)(de)e + Dw + [w, wlg. (121

Observe that the curvature — in general — does not take values in p(Hg), because from (98)
we get

T (80) = tr(e; (dep)” + e — es(des)” — eq).

The transport of the gauge transformed connection form, see (20), is due to Proposition 12
given by

Yu(w) = udu* + uwu®, (122)

and in the representation (119) it takes the form

(123)

ujd(u})e; + ujriu) |u1(r2 —iejeg)uy + ie1e4>
uy(rs — ie4e1)u’f + iegeq I U4d(llZ)e4 + ll4l‘4llz

ylw) = (
Since yy (w) must also be an element of p('H(l)), the group of gauge transformations has to
be restricted to

Uy := {u e ll: tr(uldu}*) = tr(ugdu})}. (124)

Puttingu =¢—t+--- € U, witht = —t* € p'(’HO), we obtain the infinitesimal version
of gauge transformations:

W) = w+ Dt + [w, tlg, (125)
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where we have used D¢ = 0 and t = ete. The condition y,(w) € p(’H(l)) gives dt €
p('H(l)) . Neglecting global gauge transformations, we integrate dt € p('H(l)) and obtain for
the generator of infinitesimal gauge transformations

t € p(HY). (126)

Now we give a local description of the gauge groups Il and g . Since the algebra under
consideration is commutative, there corresponds a classical (in general non-trivial) vector
bundle E over two copies of X to the Hermitian module £ . We choose a covering {O;}
of X, so that E is trivializable over this covering. Then, we can locally — on every O; —
diagonalize e; and e, , using pointwise unitary matrices p(v) € p(U(AP)), see (99). Since
e; and e4 are idempotent, we find a unitary module transformation (100), which transforms
them locally into the following standard form:

e = diag(1,...,1,0,...,0), es = diag(1,...,1,0,...,0). (127)
P P—n Pa P=Pa

Inserting (127) into (118) we see that the matrices u; and u4 can be locally characterized
as follows:

u € CROH®U(p1), u € CR°(0) ® U(pa), (128)

where C°(0;) denotes the algebra of real smooth functions on OJ; and a representation of
U(p1) in p x p-matrices containing p — p; zero-rows and -columns is used (analogously
for U(p4)). This means that the gauge group U is locally isomorphic to

U = CR(O) ® (U(p1) x U(pa)). (129)

There is a natural homeomorphism of U (n) onto SU (n) x U (1):
det 0
u=u0(eu ) (130)
0 Tu-nHxm-n

where u € U(n), ug € SU(n), detu € U(1). Extending (130) to O; and using tr(updug*)
=0, forup € CR’(0;) ® SU(n), we obtain from the condition tr(u;du}) = tr(usduj),
characterizing elements of Uy, see (124),

detu, d(detul)_1 = det uy d(det u4)_1. (131)

Integrating this result, we obtain detu; = const detuy . Since u; and u4 are unitary, the
integration constant must be a phase factor, which corresponds to a global U (1)-symmetry
of the gauge field theory.? Here we are interested only in local gauge groups, so that we
put the integration constant equal to one. This shows that we have locally

Uy = CR(O) ® (SU(p1) x SU(pa) x U(1)). (132)

2 For the standard model this global symmetry is given by a constant phase transformation only of the
right-handed fermions and the Higgs field and not of the left-handed fermions.
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Of course, the collection {116} can be used to reconstruct the gauge group lly — or in the
bundle terminology — the group of vertical automorphisms of the principal bundle associated
with E (the group of local gauge transformations).

In particular, for p4 = 1 the group of local gauge transformations is locally given by
l16 = CF(0;) @ (SU(p1) x U(1)) and for p; = 1 by I}, = CZ(O;) @ (SU(ps) x U(1)).
For p4 = 0 the group of local gauge transformations is

= CFON®U(pn. (133)
and the group of special local gauge transformations 1y is reduced to
W = C(0) ® SU(py). (134)

Analogous results can be obtained in the case p; = 0.

Finally, we comment on the local representation of the connection form w, see (119).
Using the above described local diagonalization procedure for the projection operators
e; and ey, one finds local representatives A¢;), B(;) and @(;) of ry, rs and r; = —r3,
respectively, with A, = —AZ‘,.) , Biy = —B(*i) and tr(A(;y) = tr(Bg;)). The fields A(;) and
By;y constitute the local representative of a classical gauge connection, that means a classical
differential one-form on O; with values in the Lie algebra of (SU(p1) x SU (pg) x U(1)).
The field @ ;) is a vector space-valued function on O; and can be physically interpreted as
a matter field — as will be done in Section 4.3. The fact that two different classical objects
are unified in one non-commutative connection form is, of course, due to the fact that we
started with a non-commutative differential calculus.

4.3. The case of the standard model

Here we will show that the mathematical structures underlying an approach to the deriva-
tion of the standard model, proposed by Coquereaux et al. [8,10-12], can be obtained as
a special case of the structures derived in Section 4.2. Partly our notations and sign con-
ventions differ from the original ones, due to the fact that we started essentially with the
conventions of Connes. We put N = 4 for the dimension of the manifold X and assume
that X is topologically trivial, for many physical applications it has the topology of R*.
In that case all local considerations of Section 4.2 concerning the group of local gauge
transformations and the non-commutative connection form w become global.

The starting point in the Mainz—-Marseille approach is the differential algebra A*(X) ®
M4C, orrather [12] M4C ® A*(X), giving in general a different sign in (105). This means
that we put p = 2 in formulae of Section 4.2. Putting for ¢, see (111), e = diag(1, 1, 1, 0),
we get a graded Lie subalgebra of A*(X) ® spl(2, 2), see (112), which we denote by
A*(X) ® spl(2, 1). We note that this graded Lie algebra was denoted in [11] by A*(X) ®
SU@2|1).

The authors of [11] formally define a connection putting

V=¢d4w, (135)
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where b is the natural differential on A*(X) ® M4C, see (109). For the gauge potential w
they postulate the form

Al A —i®; 0

x_ Aﬂ AEE —i¢y O
—i®P, —iPy B 0

0 0 0 0

Aij = —Aj; e AY(X), B=—-B e A'(X), Al + An = B, &; € A%X).

€ AY(X) ®spl(2, 1), (136)

A certain module, on which this connection can act, was defined in [14]. But a deeper
explanation for the choice of the connection form w was not given. The curvature of this
connection is [11]

f=V2=e(e)(de)e + Dw + 5w, wly, (137)

where D is given by (113), and the bosonic action is Sp = fx (f, f)o, with {, ) denoting
an appropriate product.

It was unclear in this approach what the group of gauge transformations is. Instead of
this, only infinitesimal gauge transformations were defined, see [11],

w) i=w+ Dt + [w, t]g, t=—t* € AMX)®spl(2,1). (138)

The authors of [11] notice that for the standard model only those t make sense, which have
the form

Tit Tz 0 O
T T: 0 0 =

t (2;1 32 Tz 0 Tij = ~Tj € A%X), tr(lpt) =0. (139)
0 0 0 o

A deeper explanation why one should restrict t to the form (139) was not given. For an
extended theory including differential forms of higher degree there were discussed more
general “superbosonic” gauge transformations [11].

Finally, we notice that there exists a formulation of the Mainz—Marseille model in terms
of 3 x 3-matrices [15,23], for a parallel treatment of both formulations see [13]. However,
in this formulation a field strength was used, which cannot be interpreted as the curvature
of a connection, because the term e(be)(de)e occurring in the curvature of a connection on
a finite projective module was neglected.

Now we show that all structures occurring here find their natural explanation within the
framework developed in Section 4.2. For this purpose we put p = p1 =2, ps =1, see
(127).

1. We define the module for the Mainz—Marseille approach as p(€) , which is a right module
over the algebra p(.4) . Next, m occurring in formula (109) takes the form

m— i (1 0 12“) , (140)

2x2 0
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see also (104). Thus, from (97) and (109) one finds
(V&) =edr, r=p(&) €p®), (141)
and - using (87) and (119) — one gets
PVE =p(Vp€+08) =cdr+wOr (142)

with w € A*(X) ® spl(2, 1). Moreover, w given by (119) fulfills additionally (120).
Changing the notations r; = A, ry = B, r; = —i®, r3 = —i®*, we obtain exactly
the form of the gauge potential postulated in the Mainz-Marseille approach, see (136),

A —ig .
w = (—-iq)* B ) tr(A) = tr(B),

Al A ~ ~ B 0 (P 0

A= —A*= , B=—-B*= ., D= .

(AZ] Azz) (0 0) k¢2 0
(143)

We note that the transported connection V, = pVp (&) — p(EN) fulfills
V(a) = (M oa+d(a), rep@), aeplA), (144)

which is exactly the transport of the defining equation of a connection, see Definition 4.
Finally, observe that formula (121) for the curvature adapted to the case under consid-
eration gives exactly (137).

. We define the group of gauge transformations in the Mainz—Marseille model as the group
Uy of special unitary automorphisms of the module p(€) with identity p(e) = ¢, see
(124). From (132) we find in the case under consideration

Uy = CR(X) ® (SU(2) x U(1)), (145)

which is just the group of local gauge transformations of the Salam—Weinberg model.
Writing down local gauge transformations, see (122), or rather infinitesimal gauge trans-
formations, see (125) and (126), we get exactly (139) postulated in the Mainz—Marseille
approach:

r:(T‘ 0). tw(T1) = tr(Ty),

Ty =T} = (T” T‘Z) e A%X) ® MoC,

oy Tn
T 0
Ty=—T} = ( (3)3 0) € A%(X) ® es(MC)ey. (146)

see (78), (80), (93) and (96). Thus, t coincides with (139) of the Mainz—Marseille ap-
proach. This justifies the choice of infinitesimal gauge transformations in the model
of Coquereaux and Scheck. But extended “superbosonic” gauge transformations t €
A*(X) ® spl(2, 1), which were suggested in [11], are within this context not allowed.
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We stress that — contrary to classical differential geometry — the Lie algebra of the struc-
ture group SU(2) x U (1) does not coincide with the Lie algebra spl/(2, 1), where the
gauge potential takes its values.

S. Model building

In this section we outline the derivation of the standard model based on the simplest
two-point K-cycle. For a detailed presentation of this approach we refer to [27].

The K-cycle (A, h, D) reviewed in Section 3.1, together with the finite projective module
E=eA’ e = diag(1,0, 1, 1) ® idr , was used by Connes in [5,6] and by Connes and
Lott in [7] to obtain a unification of the Salam—Weinberg model - the theory of electroweak
interactions of leptons. Using this K-cycle together with the module £ and the canonical
prescription for the physical Hilbert space [7], H = £ ® 4 &, it is impossible to derive the
full standard model. That is why Connes and Lott proposed a different K-cycle, namely
(A; ® By, hs, Dg), where

hs =L*(X,$) ® (F- ® Fy),

F.=C*'oCeC)ecCHh,

Fy=Co(CeC) ech, (147)
Ay =CR(X) @ (CaH),

B; = CF(X) ® (C & M30).

Here Ny =3 is the number of generations of fermions and H is the real algebra of quater-
nions. All tensor products occurring in (147) are over R, which means in particular that the
algebras A, and B; are real algebras. The differential operator D has the same structure as
the operator D in (46) for an appropriate choice of F1 and M . In this approach one uses
a free module, namely & = A, ® B;. A detailed exposition of these ideas was presented
by Kastler in [18,19], see [17] for an earlier version.

It is worthwhile to notice that in this approach one obtains certain constraints between
the masses of the fermions and the masses of the W-, Z-, and Higgs-bosons. Moreover, one
gets a prediction of the Weinberg angle on tree level. In the “grand unification case” [20]
Kastler and Schiicker obtained

(g3/82)* =1, sin’bw =3, my/mw =2, mu/mw ~3.14, (148)

where g2 and g3 are the coupling constants of the electroweak and strong interactions, 6w
is the Weinberg angle, m;, mw and mpg are the masses of the top-quark, the W-boson and
the Higgs-boson.

Another way of obtaining the standard model by non-commutative geometry is the
Mainz-Marseille approach [11,12], which is based upon the mathematical structures dis-
cussed in Section 4. In a first step one writes down the bosonic action of the electroweak sec-
tor using the spl(2, 1)-gauge connection discussed in Section 4.3, see [11,12]. The bosonic
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action of the chromodynamics sector is added in the same form as in classical gauge field
theory. To write down the fermionic sector, one uses the theory of representations of the
graded Lie algebra spi(2, 1) in a finite-dimensional vector space [y, /], see [11,25], where
y means hypercharge and / isospin. One builds the Hilbert space L>(X, S)®[v, I]. leptons
live in L2(X, S) ® [1, 4] and quarks in L2(X, $) ® [$. 31 ® C3.

We note that there do not exist representations of the full graded Lie algebra A*(X) ®
spl(2, 1) in these Hilbert spaces. To define a fermionic action one has to define a covariant
derivative. For this purpose the connection form w has to be considered as an element
of (C' ® €% @ spl(2, 1), acting with the first (Clifford) part on L?(X. S) and with the
spl(2, 1)-parton [y, I]. The fermion masses are obtained from free relative normalization
constants of s/(2, C) & gi(1, C)-subrepresentations. In contrast to the model of Connes,
Lott and Kastler, the fermion masses are not related to the masses of the intermediate
vector and Higgs-bosons. Using reducible indecomposable representations of sp/(2. 1) one
describes family mixing [11].

It turns out that the combination of these ideas with the scheme developed in this paper
leads to a new derivation of the standard model. This derivation starts with the K-cycle of
Section 3.1 over the simplest two-point algebra A defined in (43), where the vector space F,
which plays an auxiliary role, is taken to be F = F@F, F = C3. The first term C? stands
for the three generations of leptons and the other one for the three generations of quarks.
With this K-cycle we associate two finite projective modules: We take for the electroweak
interaction part the module £ = eA?, e = diag(l,0, 1, 1) ®idF , see also Section 4.3, and
for the chromodynamics part the module & = ec A, e = diag(1.0,1,0,1,0)®idr . As
already mentioned above, the module e A? cannot be used to describe the full electroweak
sector if one follows the Connes-Lott prescription. The essential idea, which in our approach
makes it possible to build the full electroweak sector out of e.A?, is to consider the graded
algebra M = Hom 4 (£, £ ® 4 A%) as a graded Lie algebra. For a (graded) Lie algebra there
exist representations, which cannot be obtained from representations of a (graded) algebra.
The representation describing the electroweak interactions of quarks is of that type.

Using (30) and (54) one obtains in the case of the above module e A? forelements o € Hf‘j
the matrix representation

%(aé 2t k 21)®Mt 0 ali—zt ®Mf ‘1; 2t—1 5®M£
z’": 0 0 0 0
al(;—zt—ly ®M§ 0 al7c—2t—1y5 ®M§ (l; ®M£
(149)

where a}’- el", f=0,4,—,3,4,5,6,7. We choose M = diag(—my, —m,) , where my
and m, are real diagonal 3 x 3-matrices with non-negative entries. The index / stands for
lepton and g for quark. Therefore, we have ¢ € L* @ MaC ® M3C @ M>C . In (149) we
considered o as a 4 x 4-matrix with L* ® M3C ® M;C-valued entries. Of course, ¢ can
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also be treated as a 2 x 2-diagonal matrix with L* ® M4C ® M3C-valued entries, where the
lepton part is in the upper left block and the quark part in the lower right block, see also the
beginning of Section 3.3 for a similar reordering procedure. Next, we define an isomorphism
i:Ho —> i(Hp), which for the leptons is similar to the [y = 1,1 = %]-representation in
the Mainz—Marseille model and for the quarks to the [y = %, I = %]—representation:

. ir(or) 0
i(0) = _ : (150)
0 lq(Qq)®13x3
” %( (I; +al3( 2r)®£1 k 2r®£r {4( 2r—1 5®€er
o) = - YA e - el ety |,
=0 _ —
r AT S ey ok 2 1),5®€ e AV e
(151)
_ (2 G215 | k=15
(30474 — 4o ™) k=2r o r %7 Yo% 14
r *- ®a 2 r 1 r
&q ®B\/549; | ®y/ 395XV
W ok 2ty | ko2l
ok 2'®q (—Zar3 r_ 5% Ty o y
1
o i ®q; ®ﬂ\/>q2 ®y/ 3 a5xY
191Qq) -= k=2r—1_5 k—2r—1_5 ’
o —af r y o r _ZQS 2r o
® -1 /2 r ®ﬂ_1 2.r ®q'
B 343 343 4
o215 k=2r-15 1 k2
o 4 o 0 3,7
®(x7)_'ﬂq§ ®(x¥)~ fq3 ®x 'djx
(152)
where
¢y = (mm})", £ =-m(m/m)", £5=-m/(mm}), € = (mm)",
qp = (mgmy)", g3 = —my(mgmg)”, g3 = —mg(mgmy)", q; = (mymg)".

In the above formulae € and g8 are invertible diagonal 3 x 3-matrices which, therefore,
commute with m;, m}, mg, m;. For the invertible 3 x 3-matrices ¥ and y we have to
demand (xy)~'m}mgxy = x ~'m}mgyx , which is achieved by taking xy x ' diagonal.
The matrix x need not be unitary.

There are essential differences comparing with the representations used in the Mainz—
Marseille model: We do not need reducible indecomposable representations to describe
family mixing, because the mass matrices m; and m, acting on the generation space C*
are an intrinsic part of the algebra .4 and, therefore, of the graded Lie algebra Hg . The
existence of the (compared with the Mainz—Marseille scheme additional) C3-factor leads to
the effect that in our model there occur arbitrary 3 x 3-matrices 8, y, €, x in the representa-
tion, which correspond to the free relative normalization constants of s/(2, C) & gl (1, C)-
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subrepresentations occurring in the theory of representations of super Lie algebras [25] and
in the Mainz-Marseille model. Hence, our model contains a priori a big number of free
parameters, namely the free relative normalization matrices 8, v, €, x as in the Mainz—
Marseille scheme and the parameters of the mass matrix M as in the Connes-Lott scheme.
However, there is a subtle interplay between these parameters. They occur only in such
combinations that, effectively, we end up with one parameter more than in the model of
Connes, Lott and Kastler [27].

In order to construct the fermionic action we must take instead of the above defined
canonical Hilbert space H the Hilbert space

H=LXX, 9, 1e(}318C)eC.

The last C3-factor is a representation space of End(F), labelling the fermion generations.
Although there do not exist representations of the full graded Lie algebra Hy in H (just as
in the Mainz—Marseille model), one can easily define a canonical action of elements of H6 \
k =0,1,2, onelements of H using the representations (151) and (152). Then the natural
fermionic action is

Sk = (W, (DY +i(in +ip)W¥W) 5 +he., W e A, (153)

where p denotes the connection form, h.c. the Hermitian conjugate of the preceding term,
(. )j the canonical scalar product on H and w was given in (71). After a Wick rotation
to Minkowski space and imposing the usual chirality condition for the fermions we get
precisely the fermionic action of the standard model, where the fermionic mass matrices
are? [27]:

m, = 3(* — e Hmj
mrtZ%@(ﬂ*+ﬂ_')m2, (154)
my = 1/ Loy = o my

withe = (e. . )T, u = (u,c. )T, d = (d, s, b)T . The occurrence of the y>-factor in
elements of Hp leads to the minus signs in the formulae for m, and m/; and the plus sign
for m, . In the model of Connes, Lott and Kastler these ys-factors are harmful, because
they give a wrong sign in some terms of the fermionic Lagrangian. In our model a different
sign due to the y>-factors is highly desired, because in (155) this leads in the simplest case
B, y. €, x = 1343 to a mass hierarchy in the sense that the top-quark is much heavier than
the bottom-quark and the leptons.

In our construction of the standard model one immediately obtains the correct hyper-
charges of the fermions — for the same reasons as in the Mainz—Marseille model: The
U (1)-subgroup of Uy acts on both the right-handed and the left-handed fermions (see
(118) with detu; = detuy ), while the U(1)-subgroup of Kastler’s electroweak gauge

3 The matrix m; is not diagonal, it can be written as mt’i = my V, where my is diagonal and V denotes the
Kobayashi—-Maskawa matrix.
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group SU(2) x U(1) acts only on the right-handed fermions. Therefore, in Kastler’s ver-
sion one must include the algebra B, and impose a generalized Poincaré duality condition
[18,20], which yields a constraint between the three U (1)-subgroups of the local gauge
group U (A; ® Bs) = CR(X) @ (SU(2) x U(1) x SU(3) x U(1) x U(1)) giving the local
gauge group C§°(X) ® (SUR) x U(l)y x SU(3)) of the standard model.

To construct the bosonic electroweak action we first transport* the curvature 6 by i.
In a next step we associate to i(6) in a unique way a bounded operator 6 on the Hilbert
space H . This step is completely analogous to the Connes—Lott prescription and uses the
Dixmier trace giving a canonical projection procedure. This projection has for our model
the same consequences as in the model of Connes, Lott and Kastler: If there was only one
generation of fermions then the Higgs potential would vanish — but manifestly we have three
generations. Finally, using again the canonical scalar product { , ) ) On B( H) induced
by the Dixmier trace, one defines the bosonic action as Sg = ®, 5) B(A) After a Wick

rotation and certain reparameterizations this action coincides® with the classical bosonic
electroweak action, with the relations [27]

mw = 5L ((el2 + e DImy 2 + 2012 + 18172 + (xy 2 + | xy 1D} img 2),

maf—ﬁ\/tr(%hﬁqlﬂ%lrﬁ:l“), mz = mw / cosbw, (155)

where |m|? := mm*, |m|™2 := (mm*)~!, |m|* := (mm* — %tr(mm*)13x3)2, for a
3 x 3-matrix m . Thus, the fermion masses and the masses of the W-, Z- and Higgs-bosons
depend on both the parameters of the mass matrix M, as in the model of Connes, Lot
and Kastler, and on the free relative normalization matrices similar to the Mainz—Marseille
model. Therefore, we get relations between boson and fermion masses as in the model of
Connes, Lott and Kastler, whereas we recall that such relations cannot be obtained within
the Mainz—Marseille scheme. From (155) and (155) one obtains

Vimy <m<\[Smw.  mp<243mw. (156)
Moreover, one has (g3 /g2)2 = 1 and sin? fw = % as in (148). However, we stress that
the relations (148) and (156) are on classical (tree) level, they rather do not survive the
renormalization procedure. But there seems to be only a weak scale dependence {1]. The
construction of the chromodynamics part is, in principle, identical with the classical theory,
because elements of the graded Lie algebra H associated to the module &, are su (3)-valued
differential forms.

In conclusion, the K-cycle (A, h, D) of Connes and Lott can be equally well used for a
derivation of the standard model as the K-cycle (A; ® By, hy, D;) .

4 There is a subtle point in transporting 6y ¢ Ho.
3 There occurs additionally a cosmological constant in the Lagrangian due to the term 6 of the curvature
(19), which is typical for models with non-trivial projective modules.
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Appendix A. Proof of Proposition 8

Since the matrices M"{ are fixed, any linear mapping 7 : A% — L* has the form

m m
k=2t [ k=2t—1_N+1 t
DM >y N e My
=0 =0
T
m m
k—=2t—1_N+1 t. k=2t t
2oy M eMs Y aT oM,
r=0 t=0

m 4
=33 o 4, (A1)

=0 g=1

where £/ are arbitrary elements of Endc(L*)and ) =¢84 =0, &2 =¢3 = 1.
1. Let

0 k-2 N+ @ pt ~ 0 0
k:( 2 2)eAk, A:( 2 )eA’.
0 0 A 0 a, " QM A

then we get from (55) forO < r,t,t4+r <m

TOeh—(—D"ier) = (=1L, @ Aal ™). (A2)
According to (60), the r.h.s. of formula (A.2) must be zero for all a§—2r~l and &i_z" .
which can be fulfilled only for [l,z =0forallt =0,..., m . Analogously, one obtains

L} =0forallt =0,...,m.

2. For both A and X being block-diagonal, we find A @ X — (—1)X/X e & = 0, so that we get
no additional condition in this case.

3. Let

0 ak~21—lyN+l ®Mt
A= 2 2 € A’j4,

0 0

0 0

>
I

e ALy,
&é*ZrAlyN-f—l ®M§ 0

then we get from (55) forO <r,t,14+r+1<m

T(hei—(—DH"3en)
= (_l)l_I‘C’tl+r+1((112(_2[7l A &gAzr-l)
— (=DM @ Ak
= (=D)L, L DT AaTTT, (A3)

According to (60), the r.h.s. of formula (A.3) must be zero for all a'z‘_zt_l and &{{2'"' .

which can be fulfilled only for [I,' = —[If forallt = 1,...,m. However, fort = 0
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there is no condition between E(l) and £4, so that we end up with (62), where so far £,
are arbitrary elements of End¢(L*). Inserting this result into (61) and using (59) we get
immediately condition (63).

Acknowledgements

The authors are grateful to A. Uhlmann for helpful discussions.

References

[1] E. Alvarez, J.M. Gracia-Bondia and C.P. Martin, A renormalization group analysis of the NCG
constraints myop = 2my, MHiges = 3.14mw , Phys. Lett. B 323 (1994) 259-262.
[2] A.H. Chamseddine, G. Felder and J. Frohlich, Grand unification in non-commutative geometry, Nucl.
Phys. B 395 (1992) 672-698.
[3] A.H. Chamseddine, G. Felder and J. Fréhlich, Unified gauge theories in non-commutative geometry,
Phys. Lett. B 296 (1992) 109-116.
[4] A.H. Chamseddine and J. Frohlich, S O(10) unification in non-commutative geometry, preprint Ziirich
ZU-TH 10/1993.
[5] A. Connes, Essay on physics and non-commutative geometry, preprint IHES/M/89/69.
[6] A. Connes, Non-Commutative Geometry (Academic Press, New York, 1994).
[7] A. Connes and J. Lott, The metric aspect of noncommutative geometry, in: Proc. 1991 Cargese Summer
Conf., eds. 1. Frohlich et al. (Plenum, New York, 1992).
[8] R. Coquereaux, Higgs fields and superconnections, preprint Marseille-Luminy CPT-90/P.2435.
[9] R. Coquereaux, Non-commutative geometry: a physicist’s brief review, J. Geom. Phys. 11 (1993) 307-
324,
{10] R. Coquereaux, Yang Mills fields and symmetry breaking: From Lie super-algebras to non commutative
geometry, preprint Marseille-Luminy CPT/91-PE.2637.
{11] R. Coquereaux, G. Esposito-Farese and F. Scheck, Noncommutative geometry and graded algebras in
electroweak interactions, Internat. J. Mod. Phys. A 7 (1992) 6555-6593.
[12] R. Coquereaux, G. Esposito-Farése and G. Vaillant, Higgs fields as Yang—Mills fields and discrete
symmetries, Nucl. Phys. B 353 (1991) 689-706.
[13] R. Coquereaux, R. HiuBling, N.A. Papadopoulos and E. Scheck, Generalized gauge transformations
and hidden symmetry in the standard model, Internat. J. Mod. Phys. A 7 (1992) 2809-2824.
[14] R. Coquereaux, R. HauBling and F. Scheck, Algebraic connections on parallel universes, preprint
Marseille-Luminy CPT 93/PE 2947.
[15] R. HauBling, N.A. Papadopoulos and F. Scheck, SU(2I1) symmetry, algebraic superconnections and a
generalized theory of electroweak interactions, Phys. Lett. B 260 (1991) 125-130.
[16] W. Kalau, N.A. Papadopoulos, J. Plass and J.-M. Warzecha, Differential algebras in non-commutative
geometry, preprint Mainz MZ-TH/93-28.
[17] D. Kastler, A detailed account of Alain Connes’ version of the standard model in non-commutative
geometry. [ and II, Rev. Math. Phys. 5 (1993) 477.
[18] D. Kastler, A detailed account of Alain Connes’ version of the standard model in non—commutative
differential geometry III. State of the Art, preprint Marseille-Luminy CPT-92/P.2824.
[19] D. Kastler, State of the art of Alain Connes’ version of the standard model of elementary particles in
non-commutative differential geometry, preprint Marseille-Luminy CPT-92/P.2814.
[20] D. Kastler and T. Schiicker, Remarks on Alain Connes’ approach to the standard model in non-
commutative geometry, Theor. Math. Phys. 92 (1993) 1075.
{21] R. Matthes, G. Rudolph and R. Wulkenhaar, On the structure of a differential algebra used by Connes
and Lott, preprint Leipzig University No. 17/94 (1994).
[22] N.A. Papadopoulos, J. Plass and F. Scheck, Models of electroweak interactions in non-commutative
geometry: a comparison, Phys. Lett. B 324 (1994) 380-386.



R. Matthes et al. / Journal of Geometry and Physics 20 (1996) 107-141 141

{23] F. Scheck, Anomalies, Weinberg angle and a noncommutative geometric description of the standard
model, Phys. Lett. B 284 (1992) 303-308.

[24} M. Scheunert, W. Nahm and V. Rittenberg, Classification of all simple graded Lie algebras whose Lie
algebra is reductive. [, J. Math. Phys. 17 (1976) 1626-1639.

[25] M. Scheunert, W. Nahm and V. Rittenberg, Irreducible representations of the osp(2. 1) and spi(2. 1)
graded Lie algebras, J. Math. Phys. 18 (1977) 155-162.

{26] J.C. Vdrilly and J.M. Gracia-Bondia, Connes’ noncommutative differential geometry and the standard
model, J. Geom. Phys. 12 (1993) 223-301.

[27] R. Wulkenhaar, Deriving the standard model from the simplest two-point K-cycle, preprint Leipzig
University No. 19/1995 (1995).



