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Abstract 

Using a unital associative *-algebra 91 over C and a certain class of Hermitian finite projective 
modules together with a graded involutive differential algebra, both associated with ‘?I, we develop a 
procedure for constructing graded Lie algebras with derivation. Taking, in particular, the canonical 
differential algebra of Connes’ theory, related to the simplest two-point K-cycle, we obtain a class 
of graded Lie algebras with derivation, which as one special case contains the graded Lie algebra 
used in the Mainz-Marseille approach to model building. Finally, we outline a new derivation of 
the standard model. 

Subj. Class.: Non-commutative differential geometry 
1991 MSC: 16W25; 8lVl5 
Kewords: Graded Lie algebras; Derivations; Unital associative *-algebras; Connes’ theory: Model building 

1. Introduction 

During the last decade there has been an increasing interest in methods related to non- 
commutative differential geometric structures. One of the main streams in this field was 
initiated and mainly developed by Connes [5,6]. Starting from the observation that the 
“classical” Dirac K-cycle of a Riemannian manifold X contains all information about this 
manifold, he invented the abstract notion of a K-cycle over a- in general-non-commutative 
algebra. This gives the possibility to discuss geometric structures, which - in general - 
do not possess an underlying “classical” manifold. Connes realized that already slight 
modifications of the “classical” K-cycle, namely such that the algebra remains commutative, 
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give rise to interesting physical applications. The simplest relevant example of this type 
[6] is the K-cycle over the algebra C”(X) @ (C @ C) leading to a unification of gauge 
and Higgs bosons. If one takes the tensor product of this algebra with the vector space 
of fermions, one can derive a version of the classical Lagrangian of the Salam-Weinberg 
model of electroweak interactions with the bosonic sector described in terms of a unified 
non-commutative gauge field, see [5-71. The above algebra is the simplest example of the 
class of algebras C”(X) @ (MkC @ Ml@), which we call two-point algebras. For the 
derivation of the full (classical) standard model, Connes and Lott [7] proposed to use a 
K-cycle over the algebra C,“(X) @ (C @ W), where W denotes the field of quatemions 
and C,“(X) the algebra of real smooth functions on X. A detailed presentation of this 
construction can be found in a series of papers by Kastler [ 17-201. For an overview over 
the mathematical background we refer to [26] and for a physicist’s review to [9]. 

There is another approach to model building, proposed by Coquereaux and Scheck and 
further developed by their groups in Mainz and Marseille, see [8,10-131, which at first sight 
seems to be completely different from that of Connes and Lott. These authors postulate 
ad hoc a certain graded matrix Lie algebra and consider a generalized connection with 
values in this algebra. The connection is built both from differential one forms and zero 
forms, representing the classical gauge fields of the electroweak interaction and the scalar 
Higgs fields, respectively. Adding by hand the gauge bosons of the strong interaction and 
choosing appropriate fermionic representations, one can derive the classical Lagrangian of 
the standard model in this way. 

The fact that the bosonic sector in this type of models is unified, has non-trivial phe- 
nomenological consequences. In particular, in most versions one obtains a prediction of the 
Higgs mass at tree level. However, there are - from the phenomenological point of view - 
certain subtle differences between the two above-mentioned approaches. This is mainly re- 
lated to the fact that within the construction of Connes and Lott one gets additional relations 
between boson and fermion masses. For a detailed discussion of this aspect we refer to [22]. 

In this paper we present a rigorous mathematical link between these two approaches. 
Using results from our previous paper [2 l] we will prove that given the simplest two-point 
K-cycle together with the differential algebra 526, which is obtained from the universal 
differential algebra (associated with the algebra of the K-cycle) by factorizing with respect 
to a canonically given ideal, and taking a finite projective module over the algebra, we 
are able to construct in a canonical way a graded Lie algebra. Since every finite projective 
module carries a canonical connection, this graded Lie algebra is naturally endowed with 
a derivation. If one chooses the module appropriately, then one arrives at the graded Lie 
algebra used by the Mainz-Marseille group for the derivation of the standard model. This 
way all structures, ad hoc postulated within this approach, find their natural explanation 
within the context of Connes’ theory. 

As a matter of fact, the construction of graded Lie algebras with derivation proposed in 
this paper is not limited to the case, when a K-cycle together with the canonically associated 
differential algebra QG is given. All we need - in the most general context - is a unital 
associative algebra 91 over C (fulfilling a certain technical condition) and a certain graded 
differential algebra A$, , associated with ?I in a sense defined below. Then taking an arbitrary 
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finite projective module over 5X, we can construct a graded Lie algebra with derivation - a 
fact, which at least from a purely mathematical point of view seems to be of some interest 
in itself. For physical applications as discussed above one is rather interested in the case. 
when !‘I and AZ, are endowed additionally with an involution and the module carries a 
Hermitian structure. It will be interesting to apply our general construction to situations more 
complicated than that of the simplest two-point K-cycle. In particular, a similar analysis 
for the N-point case would be interesting, because this case seems to be relevant for the 
construction of grand unified theories, see [24]. 

The paper is organized as follows: In Section 2.1 we present the construction of graded 
Lie algebras in the general context-as indicated above. In Section 2.2 we discuss the notion 
of connections on finite projective modules and show how the canonical connection gives 
rise to a graded derivation in the graded Lie algebra constructed before. Next, in Section 2.3 
we give a matrix formulation of these structures. In Section 3.1 we review results [21] on 
the differential algebra A> associated canonically with the simplest two-point K-cycle. In 
Section 3.2 we consider the graded Lie algebra ‘l-l for this case and distinguish a certain 
graded Lie subalgebra Yu of X relevant for model building. In Section 3.3 we change the 
standard matrix representation of the structures discussed before. In Section 4 we show that 
the mathematical structures used in the Mainz-Marseille approach are naturally obtained 
from the framework developed in this paper. More precisely, in Section 4.1 we derive 
a slightly generalized version of the graded Lie algebra arising in the Mainz-Marseille 
approach. In Section 4.2 we define a projection of the graded Lie algebra of Section 3.2 to 
that of Section 4.1, and we discuss the structure of the projected geometrical objects. Then, 
in Section 4.3, we specialize to the original Mainz-Marseille model as described in [ 11,121. 
Finally, in Section 5 we outline how the standard model can be derived in our scheme. 

2. The general scheme 

2.1. Finite projective modules with Hermitian structure and graded Lie algebras 

Let 91 be a unital associative *-algebra over @ , so that u*a = 0 iff a = 0. Moreover, 

let (A:i, ??, *, d) be a graded involutive differential algebra associated with ?I. That means 

A;[ = @,“=u A;, I A:, = 2l. The dot ??denotes the multiplication Ai, ??A$, c Al,” , d the 
graded differential, d : A![ -+ At,+’ , and * is an involution compatible with d, 

d(h*) = (-l)k(dA)*, h E A;,. (1) 

Since 91 = At, , we have a natural Yl-bimodule structure on A\: . When multiplying elements 
of Yt with elements of A;, , we omit the dot for simplicity. 

We recall [26] that every finite projective right module E over 91 has the structure & = 
e?lJ’, where p is a natural number and e E Endvr(%p) with e* = e . Here ‘UP is treated as 
UY @ ‘21. Elements 5‘ E YlJ’ are of the form < = C, c, @ a, , finite sum, where ca E @J’ 
and aU E 91. We shall often write 5 = c @ a with a linear extension to finite sums being 
understood. 
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Definition 1. A Hermitian finite projective right %-module is a pair (E, ( , )E) , where 

(7 )E : E x E --+ ‘21 is a sesquilinear, Hermitian, non-degenerate, positive map. 

We define a Hermitian structure on ‘%p by 

(c @ a , 2; @ ii)Y[P := (c, c”)CP a*a, (2) 

where ( , ) CP denotes a scalar product on C P. The involution of endomorphisms of 2tP is 
defined by (x*5‘, J‘)Y~P = (t, X<)~IP for x E End~~(2lJ’) . We assume that e is an orthogonal 
(Hermitian) projector, e = e*. Restricting the Hermitian structure given by (2) to E = eYIP , 
we get a Hermitian structure on E. 

Let us denote the tensor product of the right module I with the bimodule At, over the 
algebra ‘?I by Ek = & 891 At, , E” := f and &* := $keNio Ek. On E* we have the natural 
structure of a right A:,-module inherited from the multiplication in A;,: 

Ek x A:, 3 (c @VI A, ii) H (4 ~$1 h) . i := 6 @y( (A. h) E Ek+’ (3) 

for c E E , A. E A{, , h E Af,, . We extend the Hermitian structure on & to mappings 

( , );’ : Ek x E’ + Ai,+ by 

Lemma 2. We have: 

Let ‘Flk c Homsc(I, Ek) be the set of homomorphisms of the right %-module & to the 
right S-module Ek and ‘H := $k&o ‘IIk. Using the right A:,-module structure on E*, see 
(3), we get a natural associative multiplication ??on 7-1. We define ??: If’ x ‘H’ --+ ?-lkf’ 

by 

(e@@>(t):=(i& @?I ??>o(e C&i idn~,,)oi3t) (5) 

for e E 7-tk, 6 E ‘FI’, 6 E 1. The Hermitian mappings ( , )2” and ( , ):k induce an 
involution on ?-fk : 

CC, e*G>)$k := (e(t), it>:” Vt, ii E E, e E Ilk. (6) 

Due to Lemma 2, this involution is well-defined. Moreover, one can show that 

(e 0 @)* = G* 0 e*, e. 3 E X. (7) 

Thus, IFt is an associative, N-graded, unital, involutive algebra over @ . 
We define 

(8) 
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Lemma 3. With respect to the above bracket, 1-I is a graded Lie algebra, i.e. we have for 
Q,Q’E’~~‘, Q~l-i’, BEFPandz,z’EQ 

6) 

(ii) 

(iii) 

[e, i?lg = -wmt @I@ 
Cze + Ye’9 ag = Z[& e1g + z’k?‘9 Gig, 
(-l)k”[e, 16, &lg + (-lYk[& [ii 41gls + (-l>“‘[& [et &Is = 0. 

(9) 

Finally, we endow &* naturally with the structure of a left graded IFI-module, putting 

em6 =(idE 6%~ ??)o(e 6% id,!),)(t) (10) 

for Q E IHk and c E E’. By construction, we have 

Thus, &* is a natural representation space of the graded Lie algebra ‘If. 

(11) 

2.2. Connections and graded derivations 

Now we recall the notion of a connection on & associated with the differential calculus 

(A;(, 0, *. d) , see [71. 

Definition 4. (i) A connection on I is given by a C-linear map V : E --+ I’ so that 

V(ta) = (Voa + 6 8~1 da for 4 E I, a E 3. 
(ii)_Aconnecconiscompatible (withtheHermitianstructure) iff (c, Vi>2’+(Vc, g)k” = 

d(e, 6)~ for C, C E E. 

Definition 5. (cf. [7]). The gauge group U(E) is the group of unitary automorphisms of E, 
U(I) := (U E Enda( UU* = U*U = idE} and gauge transformations of the connection 
V are given by uVu*. 

We extend V uniquely to linear maps V : E” --+ En+’ by 

V(6 C&I h) := (VO . h + 6 C&I dl., 4- E E, A E A;,, (12) 

satisfying V(c ??)L) = (Vc) ??h + (-1)“c ??dh, c E E”, h E At,. The curvature of the 
connection V, 

0 := I&, (13) 

is an element of X2. 

Lemma 6. There exists a canonical compatible connection Vo on I given by 

Vu(c 8 a) := e(c @ 171) @I?( da 

with c @I a E & c YIP and 1~1 denoting the unit element of 91. 

(14) 
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Lemma 7. Any compatible connection V on 6 has the form 

v=vo+p withp=-p*E’H’. (15) 

Pro06 See [26]. 0 

The existence of the canonical connection Vu on E ensures that we have a canonical 
graded derivation ;I) : ‘Flk -+ ‘Hk+’ , 

m?)W := Voh?O)> - (-Uke ??PO 0, (16) 

where 6 E E, Q E ‘Hk. One easily shows that 

(Q)(b) = (WeNOb, 
me . a = we> ??ij + (- l)k @ ??D& 

We, f& = We, Gig + (-ljk[e, Qlg, 
(De)* = (- lIk We*) 

(17) 

for e E 7-Ik, 6 E ‘Ii’ and a E ‘3. Note, however, that D is - in general - not a differential 
of ‘FI, because we get from (16) 

D2e = ~90 0 e - 4 0 130, e E ‘H, (18) 

where 00 := Vi is the curvature of the canonical connection Vo . From (16) one also finds 

e=eo+vp+pop (19) 

and Definition 5 gives the following formulae for gauge transformations: 

uvu* = vu + 0u* + upu*, VU(P) = ujl)u* + upu*, vu(e) = L&u*. (20) 

2.3. Matrix representation 

Now we choose the canonical basis {~i}i=t,...,~ in @P together with the canonical scalar 
product. This enables us to embed all structures discussed in Sections 2.1 and 2.2 into the 
tensor product AtI 8 M,C . Observe that (.q 8 1 ~t}i=t,...,~ is the canonical basis of the free 
right %-module %P 2 0 8 ?t and 

e(Ei @ 1%) = AEj @eji. 

j=l 
(21) 

Thus, the projector e is represented by the Hermitian p x p-matrix (eji), eji E ?I?(. Therefore, 
elements 

f=ee=c@a= 2 Ei 8 Cia E E, c= 
f: 

EiCi E tip, 

i=l i=I 
(22) 
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are naturally identified with columns 

a1 

c= ; , 0 Uj = CjU E ?I. 

% 

(23) 

Observe that ee = 6 means cf=, eijaj = ai. The Hermitian structure on & takes the form 

(24) 

Therefore, elements 6 E Ik are naturally identified with columns 

cj = Ujh E Ai,. (26) 

Again, et = 6 means ~~=I eij$j = {i. The right &-module structure of &* is given by 

The canonical compatible connection Vo on E*, see (14) and (12), takes the form 

Vu{ = (006) ??h + 6 @t dh = f: (Ej C3 191) &I ejid(aih) 
i,j=l 

P 

e c (Ej ~3 191) @J~V ejid((i) 
i.j=l 

Thus, Vet E &k+’ can be represented by 

. 

(28) 

(29) 

Due to (23) and (26), Q E ‘Hk can be represented by a matrix 
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. . . Qlj 

. . . : 

. . . Qij 

. . . : 

. . . Qp.i 

. . . 

. . . eij E A:(. (30) 

We have eee = e or, in matrix representation, C:j,m,n=, ei,emnenj = eij. Moreover, 

the action of e on 6 E E’ and the product ??in the algebra IFI are represented by matrix 
multiplication: 

(e@C)i = f:eij ??tj7 
j=l 

(31) 

(32) 

and the involution (6) is given by 

(Q*)ij = (Qji)*. (33) 

We observe that 7-L can be treated as an involutive subalgebra of A;1 @ M,C. 
Using (28) and the above calculus one gets the curvature 

(eO)ij = 2 eid(ekl) ??d(erm)e,j, (34) 
k,l,J?l=l 

where, in particular, one has to use Cl n=, ei,d(e,,)e,j = 0. Using (16), (28) and (31) 
one calculates 

We>(t) = f: C&i 8 1%) @I eijd(QjfA) 
i, j.n=l 

- (-ilk f: C&i 63 1%) C3% Qijej,d(U,) 
i, j,n=l 

i. j,n,m=l 

Thus, De can be represented by the following matrix: 

! 

d(ell> . . . d(elp) 
De =ed(e)e=e i . . . i 

d(epl) . . . &epp) 1 

e. (35) 

For later purposes it is convenient to represent also &* and A$ as subspaces of A;t @M,@. 
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This goes as follows: First, &* is embedded as a vector subspace, putting 

if(C) := (~J~[:..,?. 

P 

115 

(36) 

which means building the p x p-block matrix je(c) from the p x l-column < E &*. To 
preserve the right A$-module structure of &*, we embed AT{ as a subalgebra, putting 

h 0 

in(h) := 

i 4 . . 1 hEA;,. 
0 h 

Under this embedding the right module structure 
ported as follows: 

(37) 

and the left action of ?I on E* are trans- 

3. Application to the simplest two-point K-cycle and its associated differential 
algebra ATd, 

3.1. The differential algebra A> 

The construction presented above can be, in particular, applied to the special case of a 
K-cycle and its canonically associated differential algebra fig , see [6,7]. For the rest of the 
paper we restrict ourselves to this situation. We consider the simplest two-point K-cycle, 
whose differential algebra .RE was analysed in [21]. To keep this paper self-contained, we 
review some results obtained there. 

Let X be a compact even-dimensional Riemannian spin manifold, dim(X) =: N. We 
denote by L’(X, S) the Hilbert space of square integrable sections of the spinor bundle over 
X, by C the Clifford bundle over X, and by Ck the set of those sections of C, whose values 
at each point x E X belong to the subspace spanned by products of less than or equal k 
elements of T,* X of the same parity. We consider the even K-cycle (A, h, D. f ), see [ 5-7 1. 
The Hilbert space h is 

h := L2(X, S) 8 F, (40) 

where F is a finite-dimensional Hilbert space, which in physical applications carries ferm- 
ionic degrees of freedom. We assume that there exists a self-adjoint grading operator r 
acting on h, r2 = id),, 

r = yN+’ 18 p, r E End(F), (41) 

with y Iv+j := iN/2 yty2.. . y N-’ yN and f denoting the grading operators on L2(X, S) 
and F, respectively. The (YP}~=j,...,~ are chosen as local orthonormal self-adjoint sections 
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of C' . We have the decomposition 

F = i(idp + F)F @I i(idF - f)F = F+ $ F- . (42) 

This gives the decomposition h G h+ @ h_ with h* := L2(X, S) 8 Fi . Thus, elements 

$ E h naturally decompose as @ = ($T), where @+ E h+ and +_ E h_ . Then r can be 

represented by 

N+’ @ idF+ 

0 -Y 

The algebra A of the K-cycle is 

A := C”(X) @ (C @ a=) Z C”(X) @ C”(X). (43) 

We consider the following involutive representation n of _4 on h: 

n((f, .!>)($, 4) := ((f @ &+I($), <.! @ idF_)($)) (44) 

for f, f E C”(X) and II/ E h+ , 4 E h_ . This implies that f commutes with n(d). In 
the above representation we get 

f@idF+ 0 
0 f ‘8 idF_ 

1 f, J E co s C”(X) (45) 

The self-adjoint generalized Dirac operator D of the K-cycle is 

D := DC’ C3 id& + yNfl 8 M, (46) 

where DC’ is the classical Dirac operator on L2(X, S) and M is an endomorphism of F. 
One demands Df’ + I’D = 0, which implies FM = -MF’. The self-adjointness of D 
implies M = M* . Thus, we have a natural decomposition M = M+ ~3 M_ , 

M+ := Mi(idF + F) = M_:=Mi(id,-p)= 

(47) 

where M E Hom( F_ , F+). We define 

My =(M-M+)’ = Mf! = (M+M-)‘= (48) 

My+’ =M+(M_M+)’ = 
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where 

M; := (MM*)‘. M; := M(M*M)‘. 

M; := M*(MM*)‘, M; := (M*M)‘. 

There exists an involutive representation rr of the universal differential algebra R* over 
A on h , giving the algebra [7] 

rr(R*) = &(Qk). ?r(f2O) = n(A). 
k=O 

(49) 

77(Qk) = (-iY Cx(az)[D. n(aA)] . . [D, ~(a;)] , a: E A , k> 1. 
(Y 

We restrict ourselves to the case F+ S F_ E F and demand additionally M’ $ @ idpap. 
In this case one can show, see [21], that 

m 

G3 Ck-2t @ C M;; Ck-2t+V+l B CM; 

n(nk) = I t=O t=O 

6 
Ck-2t-$,N+t @CM;; hck-2t @cM; 

(50) 

t=O 14 

where m + 1 is the number of linearly independent elements MT. We denote L” = 
C”lCnP2, for n 1 2, and put Lo = Co, L’ = C’ and Ln = (0) for II < 0. We have 
Ln = (0) for IZ > N. There is a graded algebra A> associated with n(L?*) defined as 

follows: 

A>=&>, 
k=O 

I 

~(0~) /r(fIke2) for k > 2. (51) 

Ak = ok 0 ?T(flk) := A 
w2k) for k = 0. 1 

with multiplication 

L’$ X Al, 3 (h, i) H h ??i := Uk+/(tt) E Ay’ , (52) 

where t E rr(Qk), ? E ~r(fi’), so that ok(t) = J.., a/(S) = h. One can show (211 that 

Lk-2r @ @ MI; Lk-2’-$,N+l B c M; 

nk, 2 
t=O I (53) 

&Ly2”yN+t @c,$ gLk-2t BcM; 

t=o 

Elements A E Ak, are of the form 
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al;-2t @I Mf; ,;y-l)/N+l @g 

t=O 

~(y:-2t-ly”‘+I a Mj; &-2t a M; ’ ffY” ’ L”’ 
(54) 

t=o 

Thus, we see that h is completely characterized by the sequence of elements (rfP2’, 
k-2t-I 

CX~-~~-‘, 

% ’ a4 k-2t,wheret =O,..., m . Denoting by L the classical vector space isomorphism 
L : Lk E Ck/Cke2 --+ Ak(X), where Ak(X) is the set of complex-valued k-forms on 
X, and denoting the transport by the isomorphism 1 of the exterior product A in A*(X) = 
@,“=, Ak(X) by the same symbol, we get: If $ , i-2: E L” are the characterizing elements 

ofhEA$, ~;EA;, then the characterizing elements /3: of h ??h E Ak,+l are: 

k+I-2t _ PI _ &-2’. * Ly;-2(t-r) + (_1)‘-la;-2’-l A &;-2(t-,-)+I ), 

r=O 
t 

k+l-2t-1 _ 
B2 - 

c 
C(yk-2r A &‘-2(t-‘j-1 

I 2 
+ (_l)lu;-2(t-r)-l A ($2r ), 

r=O 

@+‘-2t-l = &&zr * &;-2(t-,-)-1 + (+l,;-2(t+w A (yl-2r , ), 
(53 

r=O 

/p-2’ = &-2r A &;-2(t--r) + (_l)“a3k-2r-l A 01;-2(t-‘I+I ), 

r=O 

where t = 0, . . . , m . 
We have an involution on Af given by h* := ok(r*) with Q(r) = h . Explicitly, for 

elements h E Ak, represented as in (54) we find 

m 

c (_l)k-‘(~~-2t-‘)*yN+’ m M; 

A.* = t=o 

B Mj; &-2’)* B M; 

t=O 1. 
(56) 

We define: 

$ := -iyN+’ @M E A$, [/Ii, his := jIi 0 a. - (-lyi 0 jTi, 
da := 1-l o d o ~(a), d* := yN+ldyN+‘, (57) 
Dh := prk+l o ( (d - d*) @ idp )(A) 

force E Lk, A E A%, where d is the exterior differential on A*(X) and pQ+ 1 denotes the 
projection from Ak,f’ @I Ak,-’ onto Ak,+’ . One easily proves that D is a graded differential 
on A>. Moreover, one shows that 

ci := D + [fi, .lg (58) 
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is a graded differential on A> , too, which can be characterized as follows: If o$! are the 

characterizing elements of h E Ai, then the characterizing elements fii of 2 A. E Ak, ’ are: 

Bf’-2”’ = d~~-2? + (_l)k i(a2k-2ffl + ~~-2f+l ), 

fi;-2’ = dai-2’-’ + (- l)k i( ,$-21 _ oiP2’ )? 

Bie2* = do:-2t-1 + (- l)k i( otP2* _ ~~-‘* ), (59) 
Bqk-2*+1 = d~~-2’ + (-1)” i((,~-2*+1 + ~~~2*+1 ), 

where t = 0, . . . , m . Relation (1) is fulfilled for the differential algebra (A>, ??, *, 2) 
In [21] we have shown that A> coincides with the differential algebra G’b of Connes 

and Lott associated with the even K-cycle (A, h, D, f) The result (53) for Qh can also 
be obtained from a different procedure presented in [ 161. 

3.2. A certain Lie subalgebra of 7-1 

For the case under consideration, the graded Lie algebra ‘H can be treated as a subalgebra 
of A> @ M,C . Thus, it should be possible to define a generalized trace on ‘FI provided that 
we have a trace on A> . This is the case, indeed. 

Proposition 8. Any linear mapping T : A> -+ L*, which vanishes on graded commu- 
tators and which intertwines the differentials, i.e. 

T(J. ??5, - (-l)% ??h) = 0, k E A;, h E Al,, (60) 

Toi=doT, (61) 

has in the representation (54) the form 

= C-I (af) + 

where ,Ct : L’ --+ L* 
the exterior difSerentia1, 

doCt=Ctod, 

k-2t 
G@, - a;-2t), (62) 

t=O 

t = -l,O,..., m , are elements of End&L*) commuting with 

t=-1,O ,..., m. (63) 

Proofi See Appendix A 0 

Due to (60) we can regard the mapping T as a generalized trace. We restrict ourselves to 
the simplest case 

c-1 = 0, C, = idL* for t = 0, . . . , m , 
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for Q E ‘Hk. We introduce a special element /A E ‘If’ by 

121 

(70) 

where b was defined in (57). This gives the following matrix form: 

P = e(lPXP @ I;)e or kij = 2 eik6klb’lj. (71) 
k.l=l 

Lemma 10. For the graded Lie algebra 7-1 associated to the differential algebru A> we 
have 

Proofi Let Cr=, Ei @ ai E E, with ai = cji_‘,, eijaj E A, and Q E ‘Hk defined by 

where eni = ~~m=l enjejmemi E Ak,. Using (16), (12), (14), (58) and (70) we find 

=VO e ( 
=e 

i. j.n=l 

P 

(vOb(&j @ ej,)) ??Qniai + (Ej @ ej,) @A i(@niai) 

-(-l)k(Ej 63 ej,l) @A eni ??>(ni)} 

=c t&j @J ej,) @A ~(Q,i)ai 

i. j.tt= I 

+ f: (&j ‘8 ejn) @A (c 0 .&i - (-l)kQ,i 0 fi)ai 

Lemma 11. V is a graded derivation of ‘Ho. 

Proo$ For any Q E ‘Ht we have with (72), Lemma 9, (65) and (35) 

TR (De) = TE tee + [I-L, elg ) = TX @e) = f: TA (eijD(ejnk,;). 
i. j,n=l 
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We compute the last term using the Leibniz rule for D, the property that e is a projector 
and, finally, Eq. (60): 

2 TA (eijD(Qjn)eni) = 2 TA (Win)eni) - f: TA (D(eij>eji> 
i, j,n=l i,n=l i,j=l 

= f: TA (Winknjeji) - 2 TA (D(eij)eji) 

i, j,n=l i,j=l 

= f: TA (ejiD(einknj) - f: TA (D(eij)eji). 

i. j,n=l i,j=l 

This implies Cpj=t TA (D(eij)eji) = 0 and TR (De) = xi”=, TA (D(eii)). Finally, for- 
mula (61) gives TX (De) = d{C,“_, TA (@ii)} = 0. 0 

3.3. Changing the standard matrix representation 

In this section we analyse the matrix structures discussed in Section 2.3 for the case of 
the differential algebra presented in Sections 3.1 and 3.2. For this purpose we use the fact 
that A> can be treated as a subspace of L* 8 End(F) @J M2C. Of course, elements of 
the tensor product A> @ M,@ , which in Section 3.2 were treated as p x p-matrices with 
L* @End(F) @ M2C-valued entries, can be treated as 2 x 2-matrices with L* 8 End(F) @ 
M&-valued entries. This natural mapping can be realized as an inner automorphism of 
L* 8 End(F) @ Mzp@. It turns out that after applying this automorphism combined with 
another natural mapping, see Section 4.2, we find that the image of ‘HO coincides with a 
graded Lie subalgebra of the special graded linear Lie algebra A*(X) @ spE(p, p). This is 
the appropriate formulation for deriving the mathematical structure of the Mainz-Marseille 
approach, as will be shown in Section 4.3. 

Let W = (Wij)i,j=l,...,p E M,C and w = (w,JB)A,B=~,~ E M2C. We denote 

(73) 

and define 

it(w @9 W) = 
( 

WWl ww2 

WW2I > ww22 
(74) 

We extend this mapping naturally to the algebra L* @I End(F) @I M2C 8 M,C and denote 
it by the same letter, the restriction to the subspace A> @ M,@ will also be denoted by 
ii . It is easy to convince oneself that the mapping (74) can be also realized as an inner 
automorphism of the algebra M2,C. This goes as follows: 

it(W) := JWJJ’, W, J E M2p@, Jij = ajj,2i-1 + aj+2pq2i (75) 



R. Matthes et al. /Journal of Geomety and Physics 20 (I 996) 107-141 123 

fori,j = l,..., 2p. Moreover, it is easy to show that this operation consists in applying 

the permutation (1,2,3.4, . ,2p - 1,2p) H (1,3, . ,2p - I, 2,4, . . . , 2p) to both 
rows and columns. 

Note that due to (54) after applying the operation (75) to elements of A> @ M,@ the 
grading operator y N+’ occurs exactly in every component of the two off-diagonal blocks. 
The next step consists in removing y N+’ from these blocks and applying the classical 
isomorphism 1 : Lk - Ak(X). For this purpose we define the following vector space 
isomorphism iz from it (A> @ M,@) onto its image: 

m 

c af-2r @ MI; 
tdl .- .- 

/ 

m 

c a;-2t-’ @ M;; 
t=O 

(76) 

where c$ E Ln C3 M,C and a: := L(c$) E A”(X) ~$3 M,C . The composition of these two 
mappings gives the embedding i : A> @3 M,C + A*(X) @ End(F) @ M2,C. 

i = il 3 ii, (77) 

often we will treat i as an isomorphism onto its image. 
Now it is easy to characterize elements 

i 

m 

c 
al;-2t ,q& MI; .&-%I @ ,$ 

t =o t=O 
In 

c 
a;-2t-t @ M;; frl: a;-2t @ ,$ 

, ai E A”(X) @I M,C. (78) 

t=o t=O I 

of 3-t , &* and AT/I, see (30), (36) and (37), transported by i First, observe that P E ‘Ho 
and, therefore, we have 

i(e) = e = el ~3 idF 
0 (79) 

eq = ei = eg E A’(X) @MM,C, q = 1.4. 

Since for elements Q E 7-L we have ear = Q , we get for elements i(e) E i(R), given in the 
representation (78). 

a: = ela;el, a; = ela;e4. a; = e4azel, a; = e4aie4. (80) 

Defining iE : Ek - i(Ak, @ M,@) and iA : Ak, -r i(Ak, @ M,@) by putting 

iE := i 0 j.~, iA := i 0 in, (81) 
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we can represent elements of &* and A> as elements of A*(X) @ End(F) @ M2,C. For 
elements of iE(??) we get from the representation (78): 

aiEA”(X)@E(j), (i)=lforq=1,2, (i)=2forq=3,4, (82) 

where 

E(ij=e(ij[c[ f il i)@ci : i; i]@...@c[ i i: “1) 

Analogously, for elements of iA (A>) we have 

ai E A”(X) @ lPxP , q = 1,...,4. (83) 

Let us denote the spaces transported via i by bold symbols: 

R := i(x), 3tk := i(Z’), 3-10 := i(3_Iu), @ := i(lFt$, U(E) := i@!(E)), 

& := ie(l), Ek := iE(Ek), Ak, := iA(A) A := in(A). (84) 

We define the multiplication in i(A> @ M,C) as the transport of the multiplication . in 
A> @ M,C and denote it by the same symbol ??: 

i(x) 0 i(X) := i(x 0 i) (85) 

for x E Ak, 63 M,C, X E A$ @I M,@. Denoting i(x) = x and i(i) = 2, which we 
represent as in (78), and using (55) we get: 

x.x= 

m f 

cc @-2.3 A .$2(r-v)-I + 

r=O so 
(+-2k+I A $2”) @ $ 

m I 

cc 

(ai-2.s A ,q2(l-.tl+ 

r=O SE0 

(_l)‘-1a$-23-’ Aa -/-2(l-.t)+l) @M; 
1. 

In particular, we have 

ie(e ??0 = i(e) ??i&(C), @ E31, 6 EE*. 

Next we transport the remaining structures via i: 

(87) 

[i(e), Wig := i(k, i&), 
(i(e))* := i(e*), 

V(k(O) := k(Q), 

Di(e) := i(Q), 

where Q, e E Tf and c E &* . Using (72) we find for VQ, e E ‘H, 

038) 

(89) 

(90) 

(91) 
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VQ = ed(e)e + [P, elg, p := i(p) = eme, (92) 

m:=i(lpxpC3b) = 
0 -i lpXp @ MF _i, 

PXP @ My > 0 ’ 

where d is the classical exterior differential acting componentwise on Q . For the involution 
(89) we get in the representation (78) 

= 

/ 

m 

1;-“)* @ MI; c (- l)k-‘(a~-2’-‘)* @ Ml 

t=O f 4 

2 

(93) 
k 1 (-1) - ( a;-2t-9* @ M;; j3ai-2t)* 8 M; 

t=O r=O 

Next, we observe that we can also transport the generalized trace defined in (65): 

T’H (i(e)) := LVN (e)), e E 7-L (94) 

For elements Q E 3.tk represented as in (78) we get 

T~_I (Q) = F(tr(af-“) - tr(ai-“)). 
t=o 

Thus, elements Q E ‘Ho are characterized by 

tr(a;) = tr(al;) for alln. 

With the general form V = Vc + p of a connection on & one finds 

V = VO + p, p := i(p), 

where 

Vo~=iEoVooiE’(~)=e(d~+[m,51g), (et?. 

Next, using (34) one easily calculates 

00 := i(Ou) = e(d(e) + [m, el>(d(e) + [m, el)e. 

Finally, we study the influence of unitary transformations of the module 

(95) 

(96) 

(97) 

(98) 

E3[k--+~‘:= v<, ?i 3 et--+ p’ := vev*, A> 3 X b--+ A’ := A, 

v E U(Ap) := (i E EndA (Ap), i*i = i%* = idAP). (99) 

It is easy to show that all formulae in this section remain form invariant if we put 

e’ := vev’, d’ := d, m’ := vmv* + vd(v*), p’ := vpv* + e’vd(v*)e’. (100) 
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we get the natural graded Lie algebra structure on A*(X) @ M2,,@: 

[bl, b& := bl Q 62 - (-l)ah’ ab2 62 0 bl. 

127 

(106) 

Moreover, A*(X) @ Mzp@ is a graded involutive differential algebra with differential and 
involution given by 

b(B @ M) := (d/5) 6~ M + (-l)aB B @ G&M). (107) 

(B @ M)* := (- l)aS aM B* @ M*, (108) 

where d is the exterior differential on A*(X) and (fi A u)* = u* A fi*. One easily calculates 

bb = db + [m, big, (109) 

where we identified 1 @ m = m. One finds ([bl, 62&J* = -(-l)abl abZ [b;, b;& and 
(bb)’ = (-l)abbb* for m = --In*. In terms of 2 x 2-block matrices one has 

(110) 

where ai E A”(X) C3 M,C. One easily shows that A*(X) @ spl(p, p) is a graded Lie 
subalgebra of A*(X) @ M2,C . Moreover, the graded differential b defined in (107) respects 
the Lie subalgebra A*(X) @ spf(p, p). 

Using the projection operator 

el 0 
‘= 0 e4 C > 

(111) 

with el and eq fulfilling (79), we define a graded Lie subalgebra of A*(X) @ spl(p, p): 

S& := {b E A*(X) ~3 spl(p, p): b = ebe). (112) 

We stress that we do not demand that el and e4 are globally diagonalizable on X. This means 
that the defining equation b = ebe cannot be globally solved on X. We also underline that - 
in general - we do not have a differential on .& . What remains is a derivation 3 = eh( . )e 
on sj, . Explicitly, one has 

‘s\b = ed(b)e + [eme, big, b E .‘&. (113) 

4.2. A projection 

Now, recalling the representation (78) for i(A> @ M,C), we can define a surjective 
mapping 

p : i(A> CS M,C) - A*(X) @ M2&, (114) 
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Observe that e = p(e) = diag(et , e4), see (79) and (111). 

Proposition 12. 
(9 PWO) = a,. 

(ii) 
(iii) 

(iv) 

(P(e))* = P(e*L e E 7-10. 
Fork + 1 5 2m + 1 we have P([Q. ela) = Me>, PIN, e E ‘?& 5 E ‘Jib. 
Fork I 2m we have p(Pe) = CD(p(e)), e E ‘Hi. 

ProoJ 

(i> From the property (96) of elements of 3-10 we obtain immediately 

(ii) 
(iii) 

Ml70 oP(e)) = 0, eEN0. (113 

This together with ere = r for any r = p(e) E p(3-Iu) , see (80), means p(3-Iu) = @, . 
Follows immediately from’( 110) and (93). 
Using (105) and (86) one can show for k + 1 I 2m + 1 

P(X ??53 = P(X) 0 Pet:), x E i(A% @ M,@), k E i(A’, @ M,C). (116) 

For k+l > 2m+ I certain terms in X.2 disappear, because the summation in (86) only 
runs from r = 0 to t = m . These terms will in general not vanish in the product 0 of 
the projected terms. Then, since fore E ?I; the total degree of p(e) E A*(X)@IM~~@ 
equals k, we find with (8), (106), (85) and (88) 

p( [e, &) = b(e), p(G)lg, e E 7-l& 5 E Wb, k+l _( 2m + 1. (117) 

Here, on the I.h.s., [ , lg is the graded commutator in ‘Ha, while on the r.h.s., [ , lg is 
the graded commutator in & . 

(iv) Since p(p) = eme , see (104) and (92), for the choice made for u and z, we obtain (iv) 
for k 5 2m from (91), (92) and (113). The restriction to k ( 2m is due to the same 
reasons as in (iii), because in ZIJe there appears a graded commutator. 13 

The mapping p is not injective, because we have P o i(A% @M,@) c p o i(Ak,’ @ M,C) 
for k 5 2m - 1 . However, we observe that PI~(~;~~, C) is injective for each fixed k and 

that p restricted to x0 is an isomorphism of algebras. Since MM* 4 Cid~, we have 
m L 1 . Thus, the product of elements of x1 by elements of ‘7-L’ or 7-L’ is transported via 
p isomorphically. The same is true for the transport of the derivation (113) of elements of 
‘7-L’ and IH’ . We stress that applying p , one loses ’ the N-grading structure of ‘7-L. This is 
inevitable, because on 6, there is only a Z2-grading structure. 

Next, we discuss the transport of the gauge group of the module E, see Definition 5, and 
the structure of the transported connection form. We have End(&) = tie and, therefore, 
from (78), (80), (93) and Definition 5 we find 

’ In some physical models, see Section 5, the matrix M contains fermionic mass parameters, which are 
removed by applying p. 
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u,uT = uTu1 = el, uquq* = u&j = e4 , (118) 

where UI, u4 E A’(X) @ M,C. 
The transported connection form is a skew-adjoint element of ~(7-1’) and has according 

to Lemma 7, (78), (80), (93) and (114) the structure 

w := p(e) = f’ p2 
( 1 

) 
r3 r4 

rl = -rT. r2 = -r;, r4 = -ri, 

rl = elrlel E A’(X) ~3 M,C, r2 = elrze4 E A’(X) @3 M,C. (119) 

rj = emel E A’(X) c3 M,@, r4 = e4r4e4 E A’(X) @ M,C. 

For physical reasons, see Section 5, it is interesting to restrict the connection form w to 
p(W$ . This means, see (96), 

tr(rt ) = tr(r4). (120) 

Thus, w is a skew-adjoint element of @, . Using (19) (98) and (iv) of Proposition 12 one 
gets for the transported curvature 

f := p 0 i(0) = e(bc)(be)e + 3 w + i[w, ~1~. (121) 

Observe that the curvature - in general - does not take values in p (‘HO), because from (98) 
we get 

TX (6%~) = tr(et (de1)2 + el - e4(de4)2 - e4). 

The transport of the gauge transformed connection form, see (20), is due to Proposition 12 
given by 

v,,(w) = um* + llwlI*, (122) 

and in the representation (119) it takes the form 

Y,,(W) = 
uld(u;)el + uIr1uT ul (r2 - iele4)uz + iete4 

u4@3 - ie4et )uT + ie4et u4d(ui)e4 + w-4$ ’ 
(123) 

Since v,,(w) must also be an element of p(‘HA), the group of gauge transformations has to 
be restricted to 

110 := (II E 11: tr(uldu;) = tr(uqduz)}. (124) 

Putting 11 = e - t + . . . E U , with t = -t* E p(‘H’), we obtain the infinitesimal version 
of gauge transformations: 

Vi(W) = w + at + [w, ilg, (125) 
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where we have used Be = 0 and i = efe. The condition vl,(w) E p(‘@ gives dt E 
p(3-I:) . Neglecting global gauge transformations, we integrate dt E p(?-I$ and obtain for 
the generator of infinitesimal gauge transformations 

f (5 Pm;). (126) 

Now we give a local description of the gauge groups U and Uo . Since the algebra under 
consideration is commutative, there corresponds a classical (in general non-trivial) vector 
bundle E over two copies of X to the Hermitian module E . We choose a covering (C3i} 
of X, so that E is trivializable over this covering. Then, we can locally - on every Oi - 
diagonalize el and e4, using pointwise unitary matrices p(v) E p(U(dp)) , see (99). Since 
el and e4 are idempotent, we find a unitary module transformation (loo), which transforms 
them locally into the following standard form: 

el =diag(J,.;.,l,?,.;.,O/). e4 = diag( ,J, . :. , ?, ,O, . :. , 0,). (127) 

PI P-PI P4 P-P4 

Inserting (127) into (118) we see that the matrices UI and u4 can be locally characterized 
as follows: 

UI E C~(~i) @3 u(Pl>, U4 E Cr(Qi) 8 us (128) 

where C,“(Oi) denotes the algebra of real smooth functions on (3i and a representation of 
U(pl) in p x p-matrices containing p - pt zero-rows and -columns is used (analogously 
for U(p4)). This means that the gauge group U is locally isomorphic to 

u’ = C,“(q) @ W(P1) x U(P4)). (129) 

There is a natural homeomorphism of U(n) onto SU(n) x U( 1): 

det u 
U = ug 

0 (130) 

where u E U(n), uo E SU(n), det u E U(1). Extending (130) to C’i and using tr(uoduo*) 
= 0, for ug E CE(0i) @ SU(n), we obtain from the condition tr(ulduf) = tr(udui), 
characterizing elements of Llo , see (124), 

det u1 d(det ul)-l = det uq d(det uq)-l. (131) 

Integrating this result, we obtain det u1 = const det u4 . Since u1 and u4 are unitary, the 
integration constant must be a phase factor, which corresponds to a global U (1)-symmetry 
of the gauge field theory. 2 Here we are interested only in local gauge groups, so that we 
put the integration constant equal to one. This shows that we have locally 

ub = C,“(Oi) 63 (SU(pl) X SU(p4) X U(1)). (132) 

2 For the standard model this global symmetry is given by a constant phase transformation only of the 
right-handed fermions and the Higgs field and not of the left-handed fermions. 
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Of course, the collection (It;} can be used to reconstruct the gauge group Llu - or in the 
bundle terminology-the group of vertical automorphisms of the principal bundle associated 
with E (the group of local gauge transformations). 

In particular, for p4 = 1 the group of local gauge transformations is locally given by 
Llh = Cg(0;) @I (SU(pt) x U(1)) and for pt = I by I][) = Cr(0;) @ (Scl(p4) x U(1)). 
For pi = 0 the group of local gauge transformations is 

11’ = cg(oi) 63 U(p1). (133) 

and the group of special local gauge transformations 110 is reduced to 

g, = Cgw;) 63 SU(pt). (134) 

Analogous results can be obtained in the case pl = 0. 
Finally, we comment on the local representation of the connection form w, see (I 19). 

Using the above described local diagonalization procedure for the projection operators 
et and e4, one finds local representatives A(i), iI(i) and Q(i) of r1, r4 and r2 = -r;, 
respectively, with A(i) = -A$, , B(i) = -B& and tr(A(i)) = tr(B(i)). The fields A(i) and 
B(i) constitute the local representative of a classical gauge connection, that means a classical 
differential one-form on (?i with values in the Lie algebra of (SU(pt) x Su((p4) x U (I )). 
The field @(,) is a vector space-valued function on C’i and can be physically interpreted as 
a matter field - as will be done in Section 4.3. The fact that two different classical objects 
are unified in one non-commutative connection form is, of course, due to the fact that we 
started with a non-commutative differential calculus. 

4.3. The case of the standard model 

Here we will show that the mathematical structures underlying an approach to the deriva- 
tion of the standard model, proposed by Coquereaux et al. [8,10-121, can be obtained as 
a special case of the structures derived in Section 4.2. Partly our notations and sign con- 
ventions differ from the original ones, due to the fact that we started essentially with the 
conventions of Connes. We put N = 4 for the dimension of the manifold X and assume 
that X is topologically trivial, for many physical applications it has the topology of R4. 
In that case all local considerations of Section 4.2 concerning the group of local gauge 
transformations and the non-commutative connection form w become global. 

The starting point in the Mainz-Marseille approach is the differential algebra A*(X) @ 
M4C, or rather [ 121 M4C @I A*(X), giving in general a different sign in (105). This means 
that we put p = 2 in formulae of Section 4.2. Putting for c . see (11 I), c = diag( 1, 1, 1, 0), 
we get a graded Lie subalgebra of A*(X) @ spl(2, 2). see (112), which we denote by 
A*(X) @ spl(2, 1). We note that this graded Lie algebra was denoted in [l l] by A*(X) @ 
SU(211). 

The authors of [ 1 l] formally define a connection putting 

v = eb + w, (135) 
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where b is the natural differential on A*(X) 8 MAC, see (109). For the gauge potential w 
they postulate the form 

All AIZ -i@t 0 

-_w* = A21 A22 -i@2 0 
w = 

-iTt -is2 B 0 
E A*(x) CfJ sp1(2, l), 

(136) 
0 0 00 

Aij = -xji E A’(X), B = -B E A’(X), All + A22 = B, @i E A’(X). 

A certain module, on which this connection can act, was defined in [14]. But a deeper 
explanation for the choice of the connection form w was not given, The curvature of this 
connection is [ 1 l] 

f = V2 = e(be>(be>e + 3 w + i[w, w]a, (137) 

where CD is given by (113), and the bosonic action is $ = & (f , f)o, with ( , )O denoting 
an appropriate product. 

It was unclear in this approach what the group of gauge transformations is. Instead of 
this, only infinitesimal gauge transformations were defined, see [ 111, 

yt(w) := w + 52 f + [w, tlg, t = -t* E A*(X) @ sp1(2, 1). (138) 

The authors of [ 111 notice that for the standard model only those t make sense, which have 
the form 

t= cj = -Tji E A’(X), tr(rot) = 0. (139) 

0 0 00 

A deeper explanation why one should restrict t to the form (139) was not given. For an 
extended theory including differential forms of higher degree there were discussed more 
general “superbosonic” gauge transformations [ 1 I]. 

Finally, we notice that there exists a formulation of the Mainz-Marseille model in terms 
of 3 x 3-matrices [ 15,231, for a parallel treatment of both formulations see [ 131. However, 
in this formulation a field strength was used, which cannot be interpreted as the curvature 
of a connection, because the term e(be)(be)e occurring in the curvature of a connection on 
a finite projective module was neglected. 

Now we show that all structures occurring here find their natural explanation within the 
framework developed in Section 4.2. For this purpose we put p = pt = 2, p4 = 1 , see 
(127). 
1. We define the module for the Mainz-Marseille approach as p(E) , which is a right module 

over the algebra p(A) . Next, m occurring in formula (109) takes the form 

*n=-i(,2t2 ‘F’), (140) 
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see also (104). Thus, from (97) and (109) one finds 

131 

PWo5) = &I > b = P(t) E P(E) , 

and - using (87) and (119) - one gets 

(141) 

P(VO = P(V0 6 + ei$, = ebr + w 0 1’ (142) 

with w E A*(X) @ sp1(2, 1). Moreover, w given by (119) fulfills additionally (120). 
Changing the notations rl = A, r4 = i, r2 = -i@, r-3 = -i@*, we obtain exactly 
the form of the gauge potential postulated in the Mainz-Marseille approach, see (I 36), 

w = (_;* -?), tr(A) = tr(j). 

(143) 

We note that the transported connection V,, = pVpP’ : r(E) + ~(8’) fulfills 

V,(r:e) = (V, r)e + E,‘b(n), 1: E ~(6. n 6 P(d), ( 144) 

which is exactly the transport of the defining equation of a connection, see Definition 4. 
Finally, observe that formula (121) for the curvature adapted to the case under consid- 
eration gives exactly (137). 

2. We define the group of gauge transformations in the Mainz-Marseille model as the group 
110 of special unitary automorphisms of the module P(E) with identity p(e) = I‘, see 
( 124). From ( 132) we find in the case under consideration 

110 = C,“(X) @ (SU(2) x U(l)), (145) 

which is just the group of local gauge transformations of the Salam-Weinberg model. 
Writing down local gauge transformations, see (122), or rather infinitesimal gauge trans- 
formations, see (125) and (126), we get exactly (I 39) postulated in the Mainz-Marseille 
approach: 

trU’1) = tr(T4), 

T, zz -T; = E A’(X) @ M2C. 

T4 = -T; = E AoGO @ e4(M2@Na 

see (78), (80), (93) and (96). Thus, t coincides with (139) of the Mainz-Marseille ap- 
proach. This justifies the choice of infinitesimal gauge transformations in the model 
of Coquereaux and &heck. But extended “superbosonic” gauge transformations r E 
A*(X) @!3 spl(2, 1) , which were suggested in [ 1 I], are within this context not allowed. 
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We stress that-contrary to classical differential geometry - the Lie algebra of the struc- 
ture group SU (2) x ZJ (1) does not coincide with the Lie algebra spl(2, I), where the 
gauge potential takes its values. 

5. Model building 

In this section we outline the derivation of the standard model based on the simplest 
two-point K-cycle. For a detailed presentation of this approach we refer to [27]. 

The K-cycle (A, h, D) reviewed in Section 3.1, together with the finite projective module 
& = ed2, e = diag( 1, 0, 1, 1) @I idF , was used by Connes in [5,6] and by Connes and 
Lott in [7] to obtain a unification of the Salam-Weinberg model - the theory of electroweak 
interactions of leptons. Using this K-cycle together with the module & and the canonical 
prescription for the physical Hilbert space [7], H = E @A h , it is impossible to derive the 
full standard model. That is why Connes and Lott proposed a different K-cycle, namely 

(A, @ Bs3,, h,, D, ), where 

h, = L2(X, S) 63 (F- cl3 F+), 

F- = (C2 ~3 (Cl2 @ C3)) @ CNF, 
F+ = (a= @ (C2 8 C3)) 8 ‘CNF, 
A, = C,"(X) @ (C CD t-9, 

4, = C,“(X) @ (‘C CB M3C). 

(147) 

Here NF = 3 is the number of generations of fermions and W is the real algebra of quater- 
nions. All tensor products occurring in (147) are over R , which means in particular that the 
algebras A, and & are real algebras. The differential operator D,y has the same structure as 
the operator D in (46) for an appropriate choice of F+ and M . In this approach one uses 
a free module, namely E, = A, @ B,. A detailed exposition of these ideas was presented 
by Kastler in [ 18,191, see [ 171 for an earlier version. 

It is worthwhile to notice that in this approach one obtains certain constraints between 
the masses of the fermions and the masses of the W-, Z-, and Higgs-bosons. Moreover, one 
gets a prediction of the Weinberg angle on tree level. In the “grand unification case” [20] 
Kastler and Schiicker obtained 

(g3/g~)~ = 1, sin2 f3w = 2, mt/mw = 2 , mH/mW z 3.14, (148) 

where g2 and g3 are the coupling constants of the electroweak and strong interactions, &+ 
is the Weinberg angle, mt , mw and rnH are the masses of the top-quark, the W-boson and 
the Higgs-boson. 

Another way of obtaining the standard model by non-commutative geometry is the 
Mainz-Marseille approach [ 11,121, which is based upon the mathematical structures dis- 
cussed in Section 4. In a first step one writes down the bosonic action of the electroweak sec- 
tor using the sp1(2, I)-gauge connection discussed in Section 4.3, see [ 11,121. The bosonic 
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action of the chromodynamics sector is added in the same form as in classical gauge field 
theory. To write down the fermionic sector, one uses the theory of representations of the 
graded Lie algebra sp1(2, 1) in a finite-dimensional vector space [y, I] , see [ 11,251, where 
y means hypercharge and I isospin. One builds the Hilbert space L2(X, S) @ [y, I] , leptons 
live in L*(X, S) @ [l, i] and quarks in L*(X, S) @ [i, $]@ C” 

We note that there do not exist representations of the full graded Lie algebra A*(X) @ 
spl(2, 1) in these Hilbert spaces. To define a fermionic action one has to define a covariant 
derivative. For this purpose the connection form w has to be considered as an element 
of (C’ ED Co) @ sp1(2, l), acting with the first (Clifford) part on L”(X. S) and with the 
sp1(2, I)-part on [y, I] . The fermion masses are obtained from free relative normalization 
constants of sl(2, C) @ gl(1, C)-subrepresentations. In contrast to the model of Connes, 
Lott and Kastler, the fermion masses are not related to the masses of the intermediate 
vector and Higgs-bosons. Using reducible indecomposable representations of sp/(2. I ) one 
describes family mixing [ 111. 

It turns out that the combination of these ideas with the scheme developed in this paper 
leads to a new derivation of the standard model. This derivation starts with the K-cycle of 
Section 3.1 over the simplest two-point algebra A defined in (43) where the vector space F. 
which plays an auxiliary role, is taken to be F = k $ k. i = C=‘. The first term C” stands 

for the three generations of leptons and the other one for the three generations of quarks. 
With this K-cycle we associate two finite projective modules: We take for the electroweak 
interaction part the module & = ed*, e = diag( 1, 0, 1, 1) @I idF , see also Section 4.3, and 
for the chromodynamics part the module &, = e,d’ . e, = diag( 1.0, 1, 0, 1,O) @ idF . As 
already mentioned above, the module ed* cannot be used to describe the full electroweak 
sector if one follows the Connes-Lott prescription. The essential idea, which in our approach 
makes it possible to build the full electroweak sector out of ed*. is to consider the graded 
algebra % = HOmA (I, 8 @A A>) as a graded Lie algebra. For a (graded) Lie algebra there 
exist representations, which cannot be obtained from representations of a (graded) algebra. 
The representation describing the electroweak interactions of quarks is of that type. 

Using (30) and (54) one obtains in the case of the above module ed* for elements Q E 3-t:, 
the matrix representation 

0 0 0 

’ 0 ;(,J;-” _ ,-J-*~) @ M; c$*t-5,5 8 M; 

0 c~-*‘-‘y~ QD Mj ,;-” @ Mfi 1 
(149) 

where CY; E L” , f = 0, +, -, 3,4,5,6,7. We choose M = diag(-mr, -m,) , where ml 
and mq are real diagonal 3 x 3-matrices with non-negative entries. The index I stands for 
lepton and q for quark. Therefore, we have Q E L* @ M4C @I M3C @ M2C. In (149) we 
considered Q as a 4 x 4-matrix with L* @ M3C @ MzC-valued entries. Of course, Q can 
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also be treated as a 2 x 2-diagonal matrix with L* @ Mq@ @ M3C-valued entries, where the 
lepton part is in the upper left block and the quark part in the lower right block, see also the 
beginning of Section 3.3 for a similar reordering procedure. Next, we define an isomorphism 
i : RO --+ i(‘&) , which for the leptons is similar to the [y = 1, I = ;I-representation in 
the Mainz-Marseille model and for the quarks to the [y = 5, I = ;I-representation: 

( ii (et ) 0 
i(q) := 

0 iq(es)@ 13x3 )? 

iAed := C 
r=O 

i,(e,) := 2 
r=O 

where 

I k-2r 
(2ff3 

_ 1 k-2r 
6ff0 1 

@q; 

a,:-*? caq; 

(y6 
k-2r-ly5 

I k-2r_ 1 k-2r 
(-P3 

6(ro ) -p-y 

@w; w $4; 

a4 k-2r-'? 
2 k-2r 

-3ff0 

@p-1 ;q; @J's; 

9 k-2r-‘Y5 

@(xY)-’ J f qj 

(150) 

(151) 

k-2r-‘Y5 ZJ : s;xv 
5 k-2r-‘Y5 

@ $l;xv J 
0 

I k-21 
PO 

@x-+&x 

(152) 

e; = (mrml*)‘, e; = -mr(m@~)‘, [L; = -ml*(m,m;)‘, ei = (mfmr)‘, 

q; = (mqm~Y, q; = -mq(mim4)‘, q; = -my*(mqmGY, 42 = (m;m,)‘. 

In the above formulae E and /l are invertible diagonal 3 x 3-matrices which, therefore, 
commute with ml, rn;, m4, rn: . For the invertible 3 x 3-matrices y and x we have to 

demand (x~)-‘m~m,x~ = X-'m,*m,x , which is achieved by taking XYX-* diagonal. 
The matrix x need not be unitary. 

There are essential differences comparing with the representations used in the Mainz- 
Marseille model: We do not need reducible indecomposable representations to describe 
family mixing, because the mass matrices ml and m4 acting on the generation space C3 
are an intrinsic part of the algebra A and, therefore, of the graded Lie algebra Ea . The 
existence of the (compared with the Mainz-Marseille scheme additional) C3-factor leads to 
the effect that in our model there occur arbitrary 3 x 3-matrices ,8, y, c, x in the representa- 
tion, which correspond to the free relative normalization constants of s1(2, C) @ gl( 1, C)- 
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subrepresentations occurring in the theory of representations of super Lie algebras [25] and 
in the Mainz-Marseille model. Hence, our model contains a priori a big number of free 
parameters, namely the free relative normalization matrices /J, )/, 6, x as in the Mainz- 
Marseille scheme and the parameters of the mass matrix M as in the Connes-Lott scheme. 
However, there is a subtle interplay between these parameters. They occur only in such 
combinations that, effectively, we end up with one parameter more than in the model of 
Connes, Lott and Kastler [27]. 

In order to construct the fermionic action we must take instead of the above defined 
canonical Hilbert space H the Hilbert space 

The last C”-factor is a representation space of End(p), labelling the fermion generations. 
Although there do not exist representations of the full graded Lie algebra Xu in fi (just as 
in the Mainz-Marseille model), one can easily define a canonical action of elements of ‘FI; , 
k = 0, 1, 2 , on elements of fi using the representations ( 15 1) and (152). Then the natural 
fermionic action is 

SF = : (@, (DC’ + i(ip + ip))P)i + h.c., P E ri, (153) 

where p denotes the connection form, h.c. the Hermitian conjugate of the preceding term, 
( . )h the canonical scalar product on k and ,u was given in (71). After a Wick rotation 
to Minkowski space and imposing the usual chirality condition for the fermions we get 
precisely the fermionic action of the standard model, where the fermionic mass matrices 
are3 [27]: 

m, = :(6* - E-‘)ml* , 

(154) 

4i= i i((xv)* - (xy)-‘)m~ , $ 
with e = (e. P, t)T, u E (u, c, t)T, d = (d, s, b)T. The occurrence of the y5-factor in 
elements of 3-to leads to the minus signs in the formulae for m, and m& and the plus sign 
for m, . In the model of Connes, Lott and Kastler these y5-factors are harmful, because 
they give a wrong sign in some terms of the fermionic Lagrangian. In our model a different 
sign due to the y5-factors is highly desired, because in (155) this leads in the simplest case 

B, Y? t, x Z=Z 13 X 3 to a mass hierarchy in the sense that the top-quark is much heavier than 
the bottom-quark and the leptons. 

In our construction of the standard model one immediately obtains the correct hyper- 
charges of the fermions - for the same reasons as in the Mainz-Marseille model: The 
(I( I)-subgroup of lla acts on both the right-handed and the left-handed fermions (see 
(118) with det ui = det uq), while the U(l)-subgroup of Kastler’s electroweak gauge 

3 The matrix m& is not diagonal, it can be written as m& = md V. where md is diagonal and V denotes the 

Kobayashi-Maskawa matrix. 
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group SU(2) x U(1) acts only on the right-handed fermions. Therefore, in Kastler’s ver- 
sion one must include the algebra EIS and impose a generalized Poincare duality condition 
118,201, which yields a constraint between the three U( I)-subgroups of the local gauge 
groupU(d, a&) = C,“(X) @ (SU(2) x U(1) x SU(3) x U(1) x U(1)) givingthe local 
gauge group Cg(X) @ (SU(2) x U(l)r x SU(3)) of the standard model. 

To construct the bosonic electroweak action we first transport4 the curvature 6’ by i . 
In a next step we associate to i(0) in a unique way a bounded operator 8 on the Hilbert 
space fi . This step is completely analogous to the Connes-Lott prescription and uses the 
Dixmier trace giving a canonical projection procedure. This projection has for our model 
the same consequences as in the model of Connes, Lott and Kastler: If there was only one 
generation of fermions then the Higgs potential would vanish-but manifestly we have three 
generations. Finally, using again the canonical scalar product ( , )Bcij) on B(H) induced 

by the Dixmier trace, one defines the bosonic action as & = (e”, I!?)~(&). After a Wick 

rotation and certain reparameterizations this action coincides ’ with the classical bosonic 
electroweak action, with the relations [27] 

mW = 4 $r((kl* + l~l-*)lm12 + GWl* + IpI-*) + (Ixyl* + Ixyl-*))lmqj2), 

rnH=& tr($Ifiq14 + ~lrii14), mz = mw/cos&, (155) 

where /ml* := mm*, ]ml-* := (mm*)-‘, IrEI := (mm* - itr(mm*)13xs)2, for a 
3 x 3-matrix m . Thus, the fermion masses and the masses of the W-, Z- and Higgs-bosons 
depend on both the parameters of the mass matrix M, as in the model of Connes, Lott 
and Kastler, and on the free relative normalization matrices similar to the Mainz-Marseille 
model. Therefore, we get relations between boson and fermion masses as in the model of 
Connes, Lott and Kastler, whereas we recall that such relations cannot be obtained within 
the Mainz-Marseille scheme. From (155) and (155) one obtains 

45 mw<mtI J $mw, rnH ( 2.43mw. (156) 

Moreover, one has (gs/gz)* = 1 and sin* 0~ = $ as in (148). However, we stress that 
the relations (148) and (156) are on classical (tree) level, they rather do not survive the 
renormalization procedure. But there seems to be only a weak scale dependence [ 11. The 
construction of the chromodynamics part is, in principle, identical with the classical theory, 
because elements of the graded Lie algebra 7$1 associated to the module & are su (3)-valued 
differential forms. 

In conclusion, the K-cycle (A, h, D) of Connes and Lott can be equally well used for a 
derivation of the standard model as the K-cycle (A, @ &, h, , 0,) . 

4 There is a subtle point in transporting f30 @ XC,. 
5 There occurs additionally a cosmological constant in the Lagrangian due to the term 00 of the curvature 

(19), which is typical for models with non-trivial projective modules. 
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Appendix A. Proof of Proposition 8 

Since the matrices IV: are fixed, any linear mapping T : A> + L* has the form 

139 

(A.1) 

where Cy are arbitrary elements of End@(L*) and {I = (4 = 0, (-2 = 5‘3 = 1. 
Let 

0 ~;-~~-‘y~+‘@ M; 0 
0 0 E nk,. i= 0 

then we get from (55) for 0 5 r, t, t + r 5 m 

T(k ??h - (-l)&‘h ??A) = (-1)‘C;+,.(a;-2’-’ A c?-~~) (44.2) 

According to (60), the r.h.s. of formula (A.2) must be zero for all c$*‘-’ and &i-“’ . 
which can be fulfilled only for Lf = 0 for all t = 0, . . , m Analogously, one obtains 
Cj = 0 for all t = 0, . , m . 
For both h and h being block-diagonal, we find h ??i - (- 1 )k’h ??J. = 0 , so that we get 
no additional condition in this case. 
Let 

0 h= c~-~~-ly~+’ @M; 

0 0 

then we get from (55) for 0 I r, t, t + r + 1 I m 

T(h ??i; - (-l)% ??h) 
= (-I)‘-‘C:+,+,(cr2k-2r~’ r\q*‘-‘) 

- (-1) 
k/+k-lqI+, (G;-2r-I ,,, +2t-I) 

= (-l)[pl(L;+r+l + L;l,,+l)(a;-2’-’ Aiy-‘). (A.3) 

According to (60), the r.h.s. of formula (A.3) must be zero for all CX~-~~-’ and &i-‘r-’ , 
which can be fulfilled only for Ct = -C: for all t = 1, . , m However, for I = 0 
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there is no condition between CA and .Ci , so that we end up with (62), where so far CI 
are arbitrary elements of Endc(L*). Inserting this result into (61) and using (59) we get 
immediately condition (63). 
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